def process_file(FQ_file, img_size=(960, 960), bin_prop=(0, 90, 20), channels={'cells': 'C3-'}, data_category={'roi': ''}, annotation_extension='__RoiSet.zip', img_extension='.tif', show_plot=None, Zrange=None, dZ=2): ''' Function uses annotations generated in FIJI and creates mask based on the specified parameters. The resulting files are zipped and be used for training of a neural network with ImJoy. Args: Zrange [tuple, 2 elements]. [Optional] Tuple specifying minimum and maximum z-value that is considered in analysis. bin_prop [Tuple, 3 elements]. Specifies the bins for the histograms (min, max,delta). ''' # Get input args. Has to be FIRST call! input_args = locals() # Make sure input args are correct - assignments with 0 can come from ImJoy if Zrange[0] == 0 or Zrange[1] == 0: Zrange = None if bin_prop[1] == 0 or bin_prop[1] == 0: bin_prop = (0, 90, 20) ## Prepare folder to save results drive, path_and_file = os.path.splitdrive(FQ_file) path_results, file_results = os.path.split(path_and_file) file_base, ext = os.path.splitext(file_results) path_save = os.path.join( path_results, file_base, 'MembDist_{}'.format(time.strftime("%y%m%d-%H%M", time.localtime()))) if not os.path.isdir(path_save): os.makedirs(path_save) ## Open FQ results fq_dict = FQtoolbox.read_FQ_matlab(FQ_file) spots_all = FQtoolbox.get_rna(fq_dict) Zrna = spots_all[:, [18]] # Open annotations print('Open annotations') if 'RoiSet.zip' in annotation_extension: path_annot = os.path.join(path_results, 'zstack_segmentation') folderImporter = annotationImporter.FolderImporter( channels=channels, data_category=data_category, annot_ext=annotation_extension) annotDict = folderImporter.load(path_annot) print('average roi size:', annotDict['roi_size']) # Generate binary masks for a selected data-set binaryGen = maskGenerator.BinaryMaskGenerator(erose_size=5, obj_size_rem=500, save_indiv=True) # The generate function uses as an input the sub-dictionary for one data-category and one channel annotatFiles = annotDict['roi']['cells'] maskDict = binaryGen.generate(annotatFiles) #Use a loop and the update function to add the mask dictionary to the loaded annotation dictonary\n", for k, v in annotatFiles.items(): v.update(maskDict[k]) # Bins of histogram binsHist = np.arange(bin_prop[0], bin_prop[1], bin_prop[2]) width = 0.8 * (binsHist[1] - binsHist[0]) center = (binsHist[:-1] + binsHist[1:]) / 2 # Other parameters for calculation dist_membr_RNA = np.array([]) dist_membr_pix = np.array([]) idx = 0 # Loop over all z-slices hist_slice = {} print('Loop over slices') for k, v in annotatFiles.items(): print(f'Slice: {k}') # Get Z coordinate m = re.search('.*_Z([0-9]*)\.tif', k) Zmask = int(m.group(1)) # Check if outside of specified z range if Zrange is not None: if (Zmask <= Zrange[0]) or (Zmask >= Zrange[1]): print('Slice outside of range') continue # Get z-range for loop Zloop = np.logical_and(Zrna <= Zmask + dZ, Zrna >= Zmask - dZ).flatten() spots_loop = spots_all[Zloop, :] spots_loop_XY = spots_loop[:, [16, 17]].astype(int) # Distance transform dist_membr = ndimage.distance_transform_edt( ~v['mask_edge']) # Negate mask # Indices have to be inversed to access array dist_membr_RNA_loop = dist_membr[spots_loop_XY[:, 0], spots_loop_XY[:, 1]] # Get distance from membrane for all pixel in the cell mask_all = v['mask_fill'] + v['mask_edge'] dist_membr_pix_loop = dist_membr[mask_all] # Save values if idx == 0: dist_membr_RNA = np.copy(dist_membr_RNA_loop) dist_membr_pix = np.copy(dist_membr_pix_loop) else: dist_membr_RNA = np.append(dist_membr_RNA, dist_membr_RNA_loop, axis=0) dist_membr_pix = np.append(dist_membr_pix, dist_membr_pix_loop, axis=0) idx += 1 # Calculate histograms histRNA, bins = np.histogram(dist_membr_RNA_loop, binsHist, density=False) histpix, bins = np.histogram(dist_membr_pix_loop, binsHist, density=False) histRNAnorm = histRNA / histRNA.sum() histpixnorm = histpix / histpix.sum() histRNAnormPix = np.divide(histRNAnorm, histpixnorm) histRNAnormPix = np.nan_to_num(histRNAnormPix) hist_plot = { 'width': width, 'center': center, 'bins': bins, 'histRNA': histRNA, 'histpix': histpix, 'histRNAnormPix': histRNAnormPix } # Plot results name_save = os.path.join(path_save, f'Z-{Zmask}.png') plot_results_slice(Zmask, v, mask_all, spots_loop_XY, dist_membr, hist_plot, name_save) hist_slice[f'Z{Zmask}'] = hist_plot # Analyze all slices histRNA_all, bins = np.histogram(dist_membr_RNA, binsHist, density=False) histRNA_all_norm = histRNA_all / histRNA_all.sum() # Renormalize with pixel counts histpix_all, bins = np.histogram(dist_membr_pix, binsHist, density=False) histpix_all_norm = histpix_all / histpix_all.sum() hist_RNA_all_normPix = np.divide(histRNA_all_norm, histpix_all_norm) hist_RNA_all_normPix = np.nan_to_num(hist_RNA_all_normPix) hist_plot_all = { 'width': width, 'center': center, 'bins': bins, 'histRNA_all': histRNA_all, 'histRNA_all_norm': histRNA_all_norm, 'histpix_all_norm': histpix_all_norm, 'hist_RNA_all_normPix': hist_RNA_all_normPix } name_save = os.path.join(path_save, '_DistanceEnrichmentSummary.png') plot_results_all(hist_plot_all, name_save) if show_plot: show_plot(name_save) # Save entire analysis results as json input_args.pop('show_plot', None) analysis_results = { 'args': input_args, 'hist_all': hist_plot_all, 'hist_slice': hist_slice } name_json = os.path.join(path_save, 'DataAll.json') with open(name_json, 'w') as fp: json.dump(analysis_results, fp, sort_keys=True, indent=4, cls=NumpyEncoder) # Save histogram of pooled data as csv name_csv = os.path.join(path_save, '_HistogramPooled.csv') hist_plot_all.pop('bins', None) hist_plot_all.pop('width', None) csv_header = ';'.join(hist_plot_all.keys()) hist_values = np.array(list(hist_plot_all.values())).transpose() np.savetxt(name_csv, hist_values, delimiter=";", fmt='%f', header=csv_header, comments='') return analysis_results
def calc_nuclear_enrichment(FQ_file, binsHist): ## Get folder drive, path_and_file = os.path.splitdrive(FQ_file) path_results, file_results = os.path.split(path_and_file) # ************************************************************************* # Load nuclear outline # Generate binary masks for a selected data-set binaryGen = maskGenerator.BinaryMaskGenerator(erose_size=5, obj_size_rem=500, save_indiv=True, progress_callback=None) ## Import annotations for nuclei path_annot = os.path.join(drive, path_results, 'zstack_segmentation') folderImporter = annotationImporter.FolderImporter( channels={'nuclei': 'C4-'}, data_category={'roi': ''}, annot_ext='__RoiSet.zip', progress_callback=None) annotDict = folderImporter.load(path_annot) print('average roi size:', annotDict['roi_size']) # The generate function uses as an input the sub-dictionary for one data-category and one channel annotatFiles = annotDict['roi']['nuclei'] mask_dict_nuclei = binaryGen.generate(annotatFiles) keys_delete = [] for k, v in annotatFiles.items(): # Make sure that key in present in mask, otherwise delete if k in mask_dict_nuclei: v.update(mask_dict_nuclei[k]) else: keys_delete.append(k) # ************************************************************************* # Load embryo outline file_embryo = os.path.join(drive, path_results, 'embryo_contour.roi') # Conver dictionary & get size of ROIS roi_import = read_roi_file(file_embryo) roi_dict = {} roi_dict['embryo'] = {} roi_dict['embryo']['type'] = roi_import['embryo_contour']['type'] roi_dict['embryo']['pos'] = np.column_stack( (roi_import['embryo_contour']['y'], roi_import['embryo_contour']['x'])) # Assemble structure to call mask generator image_size = annotatFiles.values().__iter__().__next__()['image'].shape image_fake = np.zeros(image_size, dtype=np.uint8) annotat_files_embryo = {} annotat_files_embryo['embryo_contour'] = {} annotat_files_embryo['embryo_contour']['roi'] = roi_dict annotat_files_embryo['embryo_contour']['image'] = image_fake mask_dict_embryo = binaryGen.generate(annotat_files_embryo) mask_embryo = mask_dict_embryo['embryo_contour']['mask_fill'] # ************************************************************************* # Load and analyze FQ results fq_dict = FQtoolbox.read_FQ_matlab(file_load) spots_all = FQtoolbox.get_rna(fq_dict) # Z position in pixel Zrna = np.divide(spots_all[:, [2]], fq_dict['settings']['microscope']['pix_z']).astype(int) # Other parameters for calculation dist_membr_RNA = np.array([]) dist_membr_pix = np.array([]) idx = 0 # Loop over all z-slices print(' == Loop over slices') for idx_file, (k_annot, v_annot) in enumerate(annotatFiles.items()): print(f'Slice: {k_annot}') # Get Z coordinate m = re.search('.*_Z([0-9]*)\.tif', k_annot) Zmask = int(m.group(1)) # Check if outside of specified z range if Zrange is not None: if (Zmask < Zrange[0]) or (Zmask > Zrange[1]): print(f'Z-slice outside of specified range: {Zmask}') continue # Get z-range for loop Zloop = np.logical_and(Zrna <= Zmask + dZ, Zrna >= Zmask - dZ).flatten() Zloop = (Zrna == Zmask).flatten() spots_loop = spots_all[Zloop, :] spots_loop_XY = np.divide( spots_loop[:, [0, 1]], fq_dict['settings']['microscope']['pix_xy']).astype(int) # Distance transform dist_nuc_outside = ndimage.distance_transform_edt( ~v_annot['mask_fill']) dist_nuc_inside = ndimage.distance_transform_edt( v_annot['mask_fill']) # Negate mask dist_nuc = dist_nuc_outside - dist_nuc_inside # Indices have to be inversed to access array dist_nuc_RNA_loop = dist_nuc[spots_loop_XY[:, 0], spots_loop_XY[:, 1]] # Get distance from membrane for all pixel in the cell dist_membr_pix_loop = dist_nuc[mask_embryo.astype(bool)] # Save values if idx == 0: dist_membr_RNA = np.copy(dist_nuc_RNA_loop) dist_membr_pix = np.copy(dist_membr_pix_loop) else: dist_membr_RNA = np.append(dist_membr_RNA, dist_nuc_RNA_loop, axis=0) dist_membr_pix = np.append(dist_membr_pix, dist_membr_pix_loop, axis=0) idx += 1 # ************************************************************************* # Load and analyze FQ results xTicks = binsHist[:-1] width = 0.9 * np.diff(binsHist) width_full = np.diff(binsHist) center = (binsHist[:-1] + binsHist[1:]) / 2 histRNA_all, bins = np.histogram(dist_membr_RNA, binsHist, density=False) histPIX_all, bins = np.histogram(dist_membr_pix, binsHist, density=False) histRNA_norm = np.divide(histRNA_all, histPIX_all) counts_total = np.nansum(np.multiply(histRNA_norm, width_full)) histRNA_norm = np.divide(histRNA_norm, counts_total) fig1, ax = plt.subplots(3, 1) ax[0].bar(center, histRNA_all, align='center', width=width) ax[0].set_xlabel('Dist to nuc') ax[0].set_ylabel('# RNAs') ax[0].set_xticks(xTicks) ax[0].set_xticklabels(xTicks.astype(int)) ax[1].bar(center, histPIX_all, align='center', width=width) ax[1].set_xlabel('Dist to nuc') ax[1].set_ylabel('# pixels') ax[1].set_xticks(xTicks) ax[1].set_xticklabels(xTicks.astype(int)) ax[2].bar(center, histRNA_norm, align='center', width=width) ax[2].set_xlabel('Distance to nuc') ax[2].set_ylabel('RNA counts [a.u.]') ax[2].set_xticks(xTicks) ax[2].set_xticklabels(xTicks.astype(int)) ax[0].title.set_text('RNAs') ax[1].title.set_text('All pixel') ax[2].title.set_text('RNA renormalized with pixels') plt.tight_layout()
## Get folders drive, path_and_file = os.path.splitdrive(file_load) path_results, file_results = os.path.split(path_and_file) ## Import annotations path_annot = os.path.join(drive, path_results, 'zstack_segmentation') folderImporter = annotationImporter.FolderImporter(channels={'nuclei': 'C4-'}, data_category={'roi': ''}, annot_ext='__RoiSet.zip', progress_callback=None) annotDict = folderImporter.load(path_annot) print('average roi size:', annotDict['roi_size']) # Generate binary masks for a selected data-set binaryGen = maskGenerator.BinaryMaskGenerator(erose_size=5, obj_size_rem=500, save_indiv=True, progress_callback=None) # The generate function uses as an input the sub-dictionary for one data-category and one channel annotatFiles = annotDict['roi']['nuclei'] maskDict = binaryGen.generate(annotatFiles) # Use a loop and the update function to add the mask dictionary to the loaded annotation dictionary print(maskDict.keys()) keys_delete = [] for k, v in annotatFiles.items(): # Make sure that key in present in mask, otherwise delete if k in maskDict: v.update(maskDict[k])
def process_folder_fiji(path_open, channels, img_ext, annot_ext, masks_save): ''' Function uses annotations generated in FIJI and creates mask based on the specified parameters. The resulting files are zipped and be used for training of a neural network with ImJoy ''' ## Create folder to save results path_save_unet = os.path.join(path_open, 'unet_data_tmp') create_folder(path_save_unet) # Load data with FolderImporter folderImporter = annotationImporter.FolderImporter(channels=channels, data_category={ 'train': 'train', 'test': 'test' }, img_ext=img_ext, annot_ext=annot_ext) annotDict = folderImporter.load(path_open) print('average roi size:', annotDict['roi_size']) # Generate binary masks binaryGen = maskGenerator.BinaryMaskGenerator(erose_size=5, obj_size_rem=500, save_indiv=False) # Loop over data categories and verify if corresponding folder exists for key_categ, categ in annotDict['config']['data_category'].items(): # Folder to save category path_save_categ = os.path.join(path_save_unet, key_categ) create_folder(path_save_categ) # Loop over channels in data-categ for key_channel, channel in annotDict['config']['channels'].items(): # The generate function uses as an input the sub-dictionary for one data-category and one channel maskDict = binaryGen.generate(annotDict[key_categ][key_channel]) # Loop over masks and save specified ones for key_file, v in maskDict.items(): for key_mask_sel in masks_save[key_channel]: ## Get file name without extension file_base, ext = os.path.splitext(key_file) ## Save label img_save = maskDict[key_file][key_mask_sel] file_name_save = os.path.join( path_save_categ, '{}_{}.png'.format(file_base, key_mask_sel)) imsave(file_name_save, img_save) ## Save image img_save = annotDict[key_categ][key_channel][key_file][ 'image'] file_name_save = os.path.join(path_save_categ, key_file) imsave(file_name_save, img_save) # Create zip file and delete original folder file_name_zip = os.path.join(path_open, 'unet_data') shutil.make_archive(file_name_zip, 'zip', path_save_unet) if os.path.isdir(path_save_unet): shutil.rmtree(path_save_unet)
def process_file(FQ_file, bin_prop=(0, 90, 20), channels={'cells': 'C3-'}, data_category={'roi': ''}, annotation_extension='__RoiSet.zip', img_extension='.tif', show_plots=False, Zrange=None, dZ=2, plot_callback=None, progress_callback=None, log_callback=None): ''' Enrichment along the CELL MEMBRANE Function uses annotations generated in FIJI and creates mask based on the specified parameters. Args: plot_callback ... callback function to plot results (e.g. in ImJoy interface) Zrange [tuple, 2 elements]. [Optional] Tuple specifying minimum and maximum z-value that is considered in analysis. bin_prop [Tuple, 3 elements]. Specifies the bins for the histograms (min, max,delta). ''' # Get input args. Has to be FIRST call! input_args = locals() input_args['plot_callback'] = str(input_args['plot_callback']) input_args['progress_callback'] = str(input_args['progress_callback']) input_args['log_callback'] = str(input_args['log_callback']) # Show function name and input arguments function_name = sys._getframe().f_code.co_name utils.log_message( f"Function ({function_name}) called with:\n {str(input_args)} ", callback_fun=log_callback) # Make sure input args are correct - assignments with 0 can come from ImJoy if Zrange[0] == 0 or Zrange[1] == 0: Zrange = None if bin_prop[1] == 0 or bin_prop[1] == 0: bin_prop = (0, 90, 20) ## Prepare folder to save results drive, path_and_file = os.path.splitdrive(FQ_file) path_results, file_results = os.path.split(path_and_file) file_base, ext = os.path.splitext(file_results) path_save = os.path.join( drive, path_results, file_base, 'MembDist_{}'.format(time.strftime("%y%m%d-%H%M", time.localtime()))) utils.log_message(f"Save results in folder: {path_save}", callback_fun=log_callback) if not os.path.isdir(path_save): os.makedirs(path_save) ## Open FQ results fq_dict = FQtoolbox.read_FQ_matlab(FQ_file) spots_all = FQtoolbox.get_rna(fq_dict) Zrna = spots_all[:, [18]] # Open annotations utils.log_message(f'\n== Open annotations', callback_fun=log_callback) if 'RoiSet.zip' in annotation_extension: path_annot = os.path.join(drive, path_results, 'zstack_segmentation') utils.log_message(f"Opening annotation folder: {path_annot}", callback_fun=log_callback) folderImporter = annotationImporter.FolderImporter( channels=channels, data_category=data_category, annot_ext=annotation_extension, progress_callback=progress_callback) annotDict = folderImporter.load(path_annot) str_size = str(annotDict['roi_size']) utils.log_message(f'Average roi size: {str_size}', callback_fun=log_callback) #utils.log_message(f'{annotDict['roi_size']}', callback_fun=log_callback) # Generate binary masks for a selected data-set binaryGen = maskGenerator.BinaryMaskGenerator( erose_size=5, obj_size_rem=500, save_indiv=True, progress_callback=progress_callback) # The generate function uses as an input the sub-dictionary for one data-category and one channel annotatFiles = annotDict['roi']['cells'] maskDict = binaryGen.generate(annotatFiles) # Use a loop and the update function to add the mask dictionary to the loaded annotation dictionary #utils.log_message(str(maskDict.keys()), callback_fun=log_callback) utils.log_message(f"Keys of mask dictionary: {str(maskDict.keys())} ", callback_fun=log_callback) keys_delete = [] for k, v in annotatFiles.items(): # Make sure that key in present in mask, otherwise delete if k in maskDict: v.update(maskDict[k]) else: keys_delete.append(k) utils.log_message( f"Deleted keys of mask dictionary: {str(keys_delete)} ", callback_fun=log_callback) # Bins of histogram binsHist = np.arange(bin_prop[0], bin_prop[1], bin_prop[2]) width = 0.8 * (binsHist[1] - binsHist[0]) center = (binsHist[:-1] + binsHist[1:]) / 2 # Other parameters for calculation dist_membr_RNA = np.array([]) dist_membr_pix = np.array([]) idx = 0 # Loop over all z-slices utils.log_message(f'\n== Loop over slices', callback_fun=log_callback) hist_slice = {} N_annot = len(annotatFiles) for idx_file, (k_annot, v_annot) in enumerate(annotatFiles.items()): # Indicate progress via callback if progress_callback: perc = int(100 * (idx_file + 1) / (N_annot)) progress_callback({ "task": "analyze_slices", "text": f"{perc}%, {k_annot}", "progress": perc }) else: #print(f'Slice {idx_file+1}/{N_annot}: {k_annot}') utils.log_message(f'Slice {idx_file+1}/{N_annot}: {k_annot}', callback_fun=log_callback) # Get Z coordinate m = re.search('.*_Z([0-9]*)\.tif', k_annot) Zmask = int(m.group(1)) # Check if outside of specified z range if Zrange is not None: if (Zmask <= Zrange[0]) or (Zmask >= Zrange[1]): print('Slice outside of range') continue # Get z-range for loop if dZ > 0: Zloop = np.logical_and(Zrna <= Zmask + dZ, Zrna >= Zmask - dZ).flatten() else: Zloop = (Zrna == Zmask).flatten() spots_loop = spots_all[Zloop, :] spots_loop_XY = spots_loop[:, [16, 17]].astype(int) # Distance transform dist_membr = ndimage.distance_transform_edt( ~v_annot['mask_edge']) # Negate mask # Indices have to be inversed to access array dist_membr_RNA_loop = dist_membr[spots_loop_XY[:, 0], spots_loop_XY[:, 1]] # Get distance from membrane for all pixel in the cell mask_all = v_annot['mask_fill'] + v_annot['mask_edge'] dist_membr_pix_loop = dist_membr[mask_all] # Save values if idx == 0: dist_membr_RNA = np.copy(dist_membr_RNA_loop) dist_membr_pix = np.copy(dist_membr_pix_loop) else: dist_membr_RNA = np.append(dist_membr_RNA, dist_membr_RNA_loop, axis=0) dist_membr_pix = np.append(dist_membr_pix, dist_membr_pix_loop, axis=0) idx += 1 # Calculate histograms histRNA, bins = np.histogram(dist_membr_RNA_loop, binsHist, density=False) histpix, bins = np.histogram(dist_membr_pix_loop, binsHist, density=False) histRNAnorm = histRNA / histRNA.sum() histpixnorm = histpix / histpix.sum() histRNAnormPix = np.divide(histRNAnorm, histpixnorm) histRNAnormPix = np.nan_to_num(histRNAnormPix) hist_plot = { 'width': width, 'center': center, 'bins': bins, 'histRNA': histRNA, 'histpix': histpix, 'histRNAnormPix': histRNAnormPix } hist_slice[f'Z{Zmask}'] = hist_plot # Plot results name_save = os.path.join(path_save, f'Z-{Zmask}.png') plot_results_slice(Zmask, v_annot, mask_all, spots_loop_XY, dist_membr, hist_plot, name_save, show_plots) # Analyze all slices histRNA_all, bins = np.histogram(dist_membr_RNA, binsHist, density=False) histRNA_all_norm = histRNA_all / histRNA_all.sum() # Renormalize with pixel counts histpix_all, bins = np.histogram(dist_membr_pix, binsHist, density=False) histpix_all_norm = histpix_all / histpix_all.sum() hist_RNA_all_normPix = np.divide(histRNA_all_norm, histpix_all_norm) hist_RNA_all_normPix = np.nan_to_num(hist_RNA_all_normPix) hist_plot_all = { 'width': width, 'center': center, 'bins': bins, 'histRNA_all': histRNA_all, 'histRNA_all_norm': histRNA_all_norm, 'histpix_all_norm': histpix_all_norm, 'hist_RNA_all_normPix': hist_RNA_all_normPix } name_save = os.path.join(path_save, '_DistanceEnrichmentSummary.png') plot_results_all(hist_plot_all, name_save, show_plots) if plot_callback: plot_callback(name_save) if progress_callback: with open(name_save, 'rb') as f: data = f.read() result = base64.b64encode(data).decode('ascii') imgurl = 'data:image/png;base64,' + result progress_callback({"task": "show_results", "src": imgurl}) # Save entire analysis results as json (remove callback functions, since those cause errors) input_args.pop('show_plot', None) input_args.pop('plot_callback', None) input_args.pop('progress_callback', None) input_args.pop('log_callback', None) analysis_results = { 'args': input_args, 'hist_all': hist_plot_all, 'hist_slice': hist_slice } name_json = os.path.join(path_save, 'DataAll.json') with open(name_json, 'w') as fp: json.dump(analysis_results, fp, sort_keys=True, indent=4, cls=utils.NumpyEncoder) # Save histogram of pooled data as csv name_csv = os.path.join(path_save, '_HistogramPooled.csv') hist_plot_all.pop('bins', None) hist_plot_all.pop('width', None) csv_header = ';'.join(hist_plot_all.keys()) hist_values = np.array(list(hist_plot_all.values())).transpose() np.savetxt(name_csv, hist_values, delimiter=";", fmt='%f', header=csv_header, comments='') return analysis_results
def calc_nuclear_enrichment(FQ_file, binsHist, channels={'nuclei': ''}, show_plots=False, Zrange=None, dZ=2, plot_callback=None, progress_callback=None, log_callback=None): """ Enrichment at the nuclear MEMBRANE Function uses annotations generated in FIJI and creates mask based on the specified parameters. """ # Get input args. Has to be FIRST call! input_args = locals() # Get folder drive, path_and_file = os.path.splitdrive(FQ_file) path_results, file_results = os.path.split(path_and_file) file_base, ext = os.path.splitext(file_results) path_save = os.path.join( drive, path_results, file_base, 'NucEnvelopDist_{}'.format( time.strftime("%y%m%d-%H%M", time.localtime()))) if not os.path.isdir(path_save): os.makedirs(path_save) # ************************************************************************* # Load nuclear outline utils.log_message(f'Reading segmentation masks of nuclei', callback_fun=log_callback) # Generate binary masks for a selected data-set binaryGen = maskGenerator.BinaryMaskGenerator( erose_size=5, obj_size_rem=500, save_indiv=True, progress_callback=progress_callback) # Import annotations for nuclei path_annot = os.path.join(drive, path_results, 'zstack_segmentation') folderImporter = annotationImporter.FolderImporter( channels=channels, data_category={'roi': ''}, annot_ext='__RoiSet.zip', progress_callback=progress_callback) annotDict = folderImporter.load(path_annot) # The generate function uses as an input the sub-dictionary for one data-category and one channel annotatFiles = annotDict['roi']['nuclei'] mask_dict_nuclei = binaryGen.generate(annotatFiles) keys_delete = [] for k, v in annotatFiles.items(): # Make sure that key in present in mask, otherwise delete if k in mask_dict_nuclei: v.update(mask_dict_nuclei[k]) else: keys_delete.append(k) # ************************************************************************* # Load embryo outline file_embryo = os.path.join(drive, path_results, 'embryo_contour.roi') # Convert dictionary & get size of ROIS roi_import = read_roi_file(file_embryo) roi_dict = {} roi_dict['embryo'] = {} roi_dict['embryo']['type'] = roi_import['embryo_contour']['type'] roi_dict['embryo']['pos'] = np.column_stack( (roi_import['embryo_contour']['y'], roi_import['embryo_contour']['x'])) # Assemble structure to call mask generator image_size = annotatFiles.values().__iter__().__next__()['image'].shape image_fake = np.zeros(image_size, dtype=np.uint8) annotat_files_embryo = {} annotat_files_embryo['embryo_contour'] = {} annotat_files_embryo['embryo_contour']['roi'] = roi_dict annotat_files_embryo['embryo_contour']['image'] = image_fake mask_dict_embryo = binaryGen.generate(annotat_files_embryo) mask_embryo = mask_dict_embryo['embryo_contour']['mask_fill'] # ************************************************************************* # Load and analyze FQ results fq_dict = FQtoolbox.read_FQ_matlab(FQ_file) spots_all = FQtoolbox.get_rna(fq_dict) # Z position in pixel Zrna = np.divide(spots_all[:, [2]], fq_dict['settings']['microscope']['pix_z']).astype(int) # Other parameters for calculation dist_membr_RNA = np.array([]) dist_membr_pix = np.array([]) idx = 0 # Loop over all z-slices utils.log_message(f'Loop over z-slices', callback_fun=log_callback) N_annot = len(annotatFiles) for idx_file, (k_annot, v_annot) in enumerate(annotatFiles.items()): # Indicate progress via callback if progress_callback: perc = int(100 * (idx_file + 1) / (N_annot)) progress_callback({ "task": "analyze_slices", "text": f"{perc}%, {k_annot}", "progress": perc }) else: print(f'Slice: {k_annot}') # Get Z coordinate m = re.search('.*_Z([0-9]*)\.tif', k_annot) Zmask = int(m.group(1)) # Check if outside of specified z range if Zrange is not None: if not (Zrange[0] == 0 and Zrange[1] == 0): if (Zmask < Zrange[0]) or (Zmask > Zrange[1]): print(f'Z-slice outside of specified range: {Zmask}') continue # Get z-range for loop if dZ == 0: Zloop = np.logical_and(Zrna <= Zmask + dZ, Zrna >= Zmask - dZ).flatten() else: Zloop = (Zrna == Zmask).flatten() spots_loop = spots_all[Zloop, :] spots_loop_XY = np.divide( spots_loop[:, [0, 1]], fq_dict['settings']['microscope']['pix_xy']).astype(int) # Distance transform dist_nuc_outside = ndimage.distance_transform_edt( ~v_annot['mask_fill']) dist_nuc_inside = ndimage.distance_transform_edt( v_annot['mask_fill']) # Negate mask dist_nuc = dist_nuc_outside - dist_nuc_inside # Indices have to be inverted to access array dist_nuc_RNA_loop = dist_nuc[spots_loop_XY[:, 0], spots_loop_XY[:, 1]] # Get distance from membrane for all pixel in the cell dist_membr_pix_loop = dist_nuc[mask_embryo.astype(bool)] # Save values if idx == 0: dist_membr_RNA = np.copy(dist_nuc_RNA_loop) dist_membr_pix = np.copy(dist_membr_pix_loop) else: dist_membr_RNA = np.append(dist_membr_RNA, dist_nuc_RNA_loop, axis=0) dist_membr_pix = np.append(dist_membr_pix, dist_membr_pix_loop, axis=0) idx += 1 # ************************************************************************* # Load and analyze FQ results utils.log_message(f'Analyzing smFISH data', callback_fun=log_callback) x_ticks = binsHist[:-1] width = 0.9 * np.diff(binsHist) width_full = np.diff(binsHist) center = (binsHist[:-1] + binsHist[1:]) / 2 #histRNA_all, bins = np.histogram(dist_membr_RNA,binsHist ,density=False) #histPIX_all, bins = np.histogram(dist_membr_pix,binsHist ,density=False) #histRNA_norm = np.divide(histRNA_all,histPIX_all) #counts_total = np.nansum(np.multiply(histRNA_norm,width_full)) #histRNA_norm = np.divide(histRNA_norm,counts_total) # Distance of all pixel from distance map hist_pix_all, bins = np.histogram(dist_membr_pix, binsHist, density=False) hist_pix_all_norm = hist_pix_all / hist_pix_all.sum() # Distance of all RNAs hist_rna_all, bins = np.histogram(dist_membr_RNA, binsHist, density=False) hist_rna_all_norm = hist_rna_all / hist_rna_all.sum() # Re-normalize RNA distances hist_rna_all_norm_pix = np.divide(hist_rna_all_norm, hist_pix_all_norm) hist_rna_all_norm_pix = np.nan_to_num(hist_rna_all_norm_pix) # Save file with histogram histo_dist = { 'center': center, 'width': width_full, 'bins': binsHist, 'x_ticks': x_ticks, 'hist_pix_all': hist_pix_all, 'hist_pix_all_norm': hist_pix_all_norm, 'hist_rna_all': hist_rna_all, 'hist_rna_all_norm': hist_rna_all_norm, 'hist_rna_all_norm_pix': hist_rna_all_norm_pix } # Save entire analysis results as json input_args.pop('show_plot', None) input_args.pop('plot_callback', None) input_args.pop('progress_callback', None) input_args.pop('log_callback', None) analysis_results = { 'args': input_args, 'histogram': histo_dist, } name_json = os.path.join(path_save, 'DataAnalysis.json') with open(name_json, 'w') as fp: json.dump(analysis_results, fp, sort_keys=True, indent=4, cls=utils.NumpyEncoder) # Save histogram of pooled data as csv name_csv = os.path.join(path_save, '_HistogramDistances.csv') histo_dist.pop('bins', None) csv_header = ';'.join(histo_dist.keys()) hist_values = np.array(list(histo_dist.values())).transpose() np.savetxt(name_csv, hist_values, delimiter=";", fmt='%f', header=csv_header, comments='') # ************************************************************************* # Plot results # Don't show plots when they are saved if not show_plots: plt.ioff() fig1, ax = plt.subplots(3, 1) ax[0].bar(center, hist_rna_all, align='center', width=width) ax[0].set_xlabel('Dist to nuc') ax[0].set_ylabel('# RNAs') ax[0].set_xticks(x_ticks) ax[0].set_xticklabels(x_ticks.astype(int)) ax[1].bar(center, hist_pix_all, align='center', width=width) ax[1].set_xlabel('Dist to nuc') ax[1].set_ylabel('# pixels') ax[1].set_xticks(x_ticks) ax[1].set_xticklabels(x_ticks.astype(int)) ax[2].bar(center, hist_rna_all_norm_pix, align='center', width=width) ax[2].set_xlabel('Distance to nuc') ax[2].set_ylabel('RNA counts [a.u.]') ax[2].set_xticks(x_ticks) ax[2].set_xticklabels(x_ticks.astype(int)) ax[0].title.set_text('RNAs') ax[1].title.set_text('All pixel in images') ax[2].title.set_text('RNAs renormalized with pixels') plt.tight_layout() # Save and close if display not required name_save = os.path.join(path_save, '_DistanceEnrichmentSummary.png') plt.savefig(name_save, dpi=300) if not show_plots: plt.close() if plot_callback: plot_callback(name_save) if progress_callback: with open(name_save, 'rb') as f: data = f.read() result = base64.b64encode(data).decode('ascii') img_url = 'data:image/png;base64,' + result progress_callback({"task": "show_results", "src": img_url})