def main(): batch_size = 20 wordvec_size = 100 hidden_size = 100 time_size = 35 lr = 20.0 #max_epoch = 4 max_epoch = 1 max_grad = 0.25 corpus, word_to_id, _ = ptb.load_data('train') corpus_test, _, _ = ptb.load_data('test') vocab_size = len(word_to_id) xs = corpus[:-1] ts = corpus[1:] model = Rnnlm(vocab_size, wordvec_size, hidden_size) optimizer = SGD(lr) trainer = RnnlmTrainer(model, optimizer) trainer.fit(xs, ts, max_epoch, batch_size, time_size, max_grad, eval_interval=20) model.reset_state() ppl_test = eval_perplexity(model, corpus_test) print(f'test perplexity: {ppl_test}') model.save_params() print('DONE')
def main(): # ハイパーパラメータの設定 batch_size = 20 wordvec_size = 100 hidden_size = 100 # RNNの隠れ状態ベクトルの要素数 time_size = 35 # RNNを展開するサイズ lr = 20.0 max_epoch = 4 max_grad = 0.25 # 学習データの読み込み corpus, word_to_id, id_to_word = ptb.load_data('train') corpus_test, _, _ = ptb.load_data('test') vocab_size = len(word_to_id) xs = corpus[:-1] ts = corpus[1:] # モデルの生成 model = Rnnlm(vocab_size, wordvec_size, hidden_size) optimizer = SGD(lr) trainer = RnnlmTrainer(model, optimizer) # 勾配クリッピングを適用して学習 trainer.fit(xs, ts, max_epoch, batch_size, time_size, max_grad, eval_interval=20) ''' eval_interval=20 20イテレーションごとにパープレキシティを評価 ''' trainer.plot(ylim=(0, 500)) # テストデータで評価 model.reset_state() ppl_test = eval_perplexity(model, corpus_test) print('test perplexity: ', ppl_test) # パラメータの保存 model.save_params()
wordvec_size = 100 hidden_size = 100 # RNNの隠れ状態ベクトルの要素数 time_size = 35 # RNNを展開するサイズ lr = 20.0 max_epoch = 4 max_grad = 0.25 # 学習データの読み込み corpus, word_to_id, id_to_word = ptb.load_data('train') corpus_test, _, _ = ptb.load_data('test') vocab_size = len(word_to_id) xs = corpus[:-1] ts = corpus[1:] # モデルの生成 model = Rnnlm(vocab_size, wordvec_size, hidden_size) optimizer = SGD(lr) trainer = RnnlmTrainer(model, optimizer) # 勾配クリッピングを適用して学習 trainer.fit(xs, ts, max_epoch, batch_size, time_size, max_grad, eval_interval=20) trainer.plot(ylim=(0, 500)) # テストデータで評価 model.reset_state() ppl_test = eval_perplexity(model, corpus_test) print('test perplexity: ', ppl_test) # パラメータの保存 model.save_params()
# coding: utf-8 import sys import os sys.path.append(os.pardir) from rnnlm import Rnnlm from better_rnnlm import BetterRnnlm from dataset import ptb from common.util import eval_perplexity if __name__ == '__main__': model = Rnnlm() #model = BetterRnnlm() # 学習済みのパラメータの読み込み model.load_params() corpus, _, _ = ptb.load_data('test') model.reset_state() ppl_test = eval_perplexity(model, corpus) print('test perplexity: ', ppl_test)