コード例 #1
0
ファイル: test_maximizers.py プロジェクト: saadmahboob/RoBo
    def test_direct(self):
        maximizer = Direct(self.acquisition_func, self.X_lower, self.X_upper)
        x = maximizer.maximize()

        assert x.shape[0] == 1
        assert x.shape[1] == self.dims
        assert np.all(x[:, 0] >= self.X_lower[0])
        assert np.all(x[:, 0] <= self.X_upper[0])
コード例 #2
0
    def test_direct(self):
        maximizer = Direct(self.objective_function, self.lower, self.upper)
        x = maximizer.maximize()

        assert x.shape[0] == 1
        assert len(x.shape) == 1
        assert np.all(x >= self.lower)
        assert np.all(x <= self.upper)
コード例 #3
0
    def test_direct(self):
        maximizer = Direct(self.objective_function, self.lower, self.upper)
        x = maximizer.maximize()

        assert x.shape[0] == 2
        assert len(x.shape) == 1
        assert np.all(x >= self.lower)
        assert np.all(x <= self.upper)
コード例 #4
0
class Bohamiann(Optimizer):
    def __init__(self, config_space, burnin=3000, n_iters=10000):

        super(Bohamiann,
              self).__init__(sacred_space_to_configspace(config_space))
        self.rng = np.random.RandomState(np.random.seed())
        self.n_dims = len(self.config_space.get_hyperparameters())

        # All inputs are mapped to be in [0, 1]^D
        self.lower = np.zeros([self.n_dims])
        self.upper = np.ones([self.n_dims])
        self.incumbents = []
        self.X = None
        self.y = None

        self.model = BayesianNeuralNetwork(sampling_method="sghmc",
                                           l_rate=np.sqrt(1e-4),
                                           mdecay=0.05,
                                           burn_in=burnin,
                                           n_iters=n_iters,
                                           precondition=True,
                                           normalize_input=True,
                                           normalize_output=True)

        self.acquisition_func = LogEI(self.model)

        self.maximizer = Direct(self.acquisition_func,
                                self.lower,
                                self.upper,
                                verbose=False)

    def suggest_configuration(self):

        if self.X is None and self.y is None:
            # No data points yet to train a model, just return a random configuration instead
            new_x = init_random_uniform(self.lower,
                                        self.upper,
                                        n_points=1,
                                        rng=self.rng)[0, :]

        else:
            # Train the model on all finished runs
            self.model.train(self.X, self.y)
            self.acquisition_func.update(self.model)

            # Maximize the acquisition function
            new_x = self.maximizer.maximize()

        # Maps from [0, 1]^D space back to original space
        next_config = Configuration(self.config_space, vector=new_x)

        # Transform to sacred configuration
        result = configspace_config_to_sacred(next_config)

        return result
コード例 #5
0
    def suggest_configuration(self):
        if self.X is None and self.Y is None:
            new_x = init_random_uniform(self.X_lower,
                                        self.X_upper,
                                        N=1,
                                        rng=self.rng)

        elif self.X.shape[0] == 1:
            # We need at least 2 data points to train a GP
            Xopt = init_random_uniform(self.X_lower,
                                       self.X_upper,
                                       N=1,
                                       rng=self.rng)

        else:
            prior = DNGOPrior()
            model = DNGO(batch_size=100,
                         num_epochs=20000,
                         learning_rate=0.1,
                         momentum=0.9,
                         l2=1e-16,
                         adapt_epoch=5000,
                         n_hypers=20,
                         prior=prior,
                         do_optimize=True,
                         do_mcmc=True)

            #acquisition_func = EI(model, task.X_lower, task.X_upper)
            lo = np.ones([model.n_units_3]) * -1
            up = np.ones([model.n_units_3])
            ei = LogEI(model, lo, up)

            acquisition_func = IntegratedAcquisition(model, ei, self.X_lower,
                                                     self.X_upper)

            maximizer = Direct(acquisition_func, self.X_lower, self.X_upper)

            model.train(self.X, self.Y)

            acquisition_func.update(model)

            new_x = maximizer.maximize()

        # Map from [0, 1]^D space back to original space
        next_config = Configuration(self.config_space, vector=new_x[0, :])

        # Transform to sacred configuration
        result = configspace_config_to_sacred(next_config)

        return result
コード例 #6
0
    def suggest_configuration(self):
        if self.X is None and self.y is None:
            new_x = init_random_uniform(self.lower, self.upper,
                                        n_points=1, rng=self.rng)[0, :]

        elif self.X.shape[0] == 1:
            # We need at least 2 data points to train a GP
            new_x = init_random_uniform(self.lower, self.upper,
                                        n_points=1, rng=self.rng)[0, :]

        else:
            cov_amp = 1
            n_dims = self.lower.shape[0]

            initial_ls = np.ones([n_dims])
            exp_kernel = george.kernels.Matern52Kernel(initial_ls,
                                                       ndim=n_dims)
            kernel = cov_amp * exp_kernel

            prior = DefaultPrior(len(kernel) + 1)

            model = GaussianProcessMCMC(kernel, prior=prior,
                                        n_hypers=self.n_hypers,
                                        chain_length=self.chain_length,
                                        burnin_steps=self.burnin,
                                        normalize_input=False,
                                        normalize_output=True,
                                        rng=self.rng,
                                        lower=self.lower,
                                        upper=self.upper)

            a = LogEI(model)

            acquisition_func = MarginalizationGPMCMC(a)

            max_func = Direct(acquisition_func, self.lower, self.upper, verbose=False)

            model.train(self.X, self.y)

            acquisition_func.update(model)

            new_x = max_func.maximize()

        next_config = Configuration(self.config_space, vector=new_x)

        # Transform to sacred configuration
        result = configspace_config_to_sacred(next_config)

        return result
コード例 #7
0
def mtbo(objective_function,
         lower,
         upper,
         n_tasks=2,
         n_init=2,
         num_iterations=30,
         burnin=100,
         chain_length=200,
         n_hypers=20,
         output_path=None,
         rng=None):
    """
    Interface to MTBO[1] which uses an auxiliary cheaper task to speed up the optimization
    of a more expensive but similar task.

    [1] Multi-Task Bayesian Optimization
        K. Swersky and J. Snoek and R. Adams
        Proceedings of the 27th International Conference on Advances in Neural Information Processing Systems (NIPS'13)

    Parameters
    ----------
    objective_function: function
        Objective function that will be optimized
    lower: np.array(D,)
        Lower bound of the input space
    upper: np.array(D,)
        Upper bound of the input space
    n_tasks: int
        Number of task
    n_init: int
        Number of initial design points
    num_iterations: int
        Number of iterations
    chain_length : int
        The length of the MCMC chain for each walker.
    burnin : int
        The number of burnin steps before the actual MCMC sampling starts.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict with all results
    """

    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"
    assert lower.shape[0] == upper.shape[
        0], "Dimension miss match between upper and lower bound"

    time_start = time.time()
    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    n_dims = lower.shape[0]

    # Bookkeeping
    time_func_eval = []
    time_overhead = []
    incumbents = []
    runtime = []

    X = []
    y = []
    c = []

    # Define model for the objective function
    cov_amp = 1  # Covariance amplitude
    kernel = cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                ndim=n_dims + 1,
                                                dim=d)

    task_kernel = george.kernels.TaskKernel(n_dims + 1, n_dims, n_tasks)
    kernel *= task_kernel

    # Take 3 times more samples than we have hyperparameters
    if n_hypers < 2 * len(kernel):
        n_hypers = 3 * len(kernel)
        if n_hypers % 2 == 1:
            n_hypers += 1

    prior = MTBOPrior(len(kernel) + 1,
                      n_ls=n_dims,
                      n_kt=len(task_kernel),
                      rng=rng)

    model_objective = MTBOGPMCMC(kernel,
                                 prior=prior,
                                 burnin_steps=burnin,
                                 chain_length=chain_length,
                                 n_hypers=n_hypers,
                                 lower=lower,
                                 upper=upper,
                                 rng=rng)

    # Define model for the cost function
    cost_cov_amp = 1

    cost_kernel = cost_cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        cost_kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                     ndim=n_dims + 1,
                                                     dim=d)

    cost_task_kernel = george.kernels.TaskKernel(n_dims + 1, n_dims, n_tasks)
    cost_kernel *= cost_task_kernel

    cost_prior = MTBOPrior(len(cost_kernel) + 1,
                           n_ls=n_dims,
                           n_kt=len(task_kernel),
                           rng=rng)

    model_cost = MTBOGPMCMC(cost_kernel,
                            prior=cost_prior,
                            burnin_steps=burnin,
                            chain_length=chain_length,
                            n_hypers=n_hypers,
                            lower=lower,
                            upper=upper,
                            rng=rng)

    # Extend input space by task variable
    extend_lower = np.append(lower, 0)
    extend_upper = np.append(upper, n_tasks - 1)
    is_env = np.zeros(extend_lower.shape[0])
    is_env[-1] = 1

    # Define acquisition function and maximizer
    ig = InformationGainPerUnitCost(model_objective,
                                    model_cost,
                                    extend_lower,
                                    extend_upper,
                                    sampling_acquisition=EI,
                                    is_env_variable=is_env,
                                    n_representer=50)
    acquisition_func = MarginalizationGPMCMC(ig)
    maximizer = Direct(acquisition_func,
                       extend_lower,
                       extend_upper,
                       n_func_evals=200)

    # Initial Design
    logger.info("Initial Design")
    for it in range(n_init):
        start_time_overhead = time.time()
        # Draw random configuration and evaluate it just on the auxiliary task
        task = 0
        x = init_random_uniform(lower, upper, 1, rng)[0]
        logger.info("Evaluate candidate %s", str(x))
        st = time.time()
        func_val, cost = objective_function(x, task)
        time_func_eval.append(time.time() - st)

        logger.info("Configuration achieved a performance of %f with cost %f",
                    func_val, cost)
        logger.info("Evaluation of this configuration took %f seconds",
                    time_func_eval[-1])

        # Bookkeeping
        config = np.append(x, task)
        X.append(config)
        y.append(np.log(
            func_val))  # Model the target function on a logarithmic scale
        c.append(np.log(cost))  # Model the cost on a logarithmic scale

        # Estimate incumbent as the best observed value so far
        best_idx = np.argmin(y)
        incumbents.append(X[best_idx][:-1])

        time_overhead.append(time.time() - start_time_overhead)
        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(
                data,
                open(os.path.join(output_path, "mtbo_iter_%d.json" % it), "w"))

    X = np.array(X)
    y = np.array(y)
    c = np.array(c)

    for it in range(n_init, num_iterations):
        logger.info("Start iteration %d ... ", it)

        start_time = time.time()

        # Train models
        model_objective.train(X, y, do_optimize=True)
        model_cost.train(X, c, do_optimize=True)

        # Estimate incumbent as the best observed value so far
        best_idx = np.argmin(y)
        incumbent = X[best_idx][:-1]
        incumbent = np.append(incumbent, 1)
        incumbent_value = y[best_idx]

        incumbents.append(incumbent[:-1])
        logger.info("Current incumbent %s with estimated performance %f",
                    str(incumbent), incumbent_value)

        # Maximize acquisition function
        acquisition_func.update(model_objective, model_cost)

        new_x = maximizer.maximize()
        new_x[-1] = np.rint(
            new_x[-1])  # Map float value to discrete task variable

        time_overhead.append(time.time() - start_time)
        logger.info("Optimization overhead was %f seconds", time_overhead[-1])

        # Evaluate the chosen configuration
        logger.info("Evaluate candidate %s", str(new_x))
        start_time = time.time()
        new_y, new_c = objective_function(new_x[:-1], new_x[-1])
        time_func_eval.append(time.time() - start_time)

        logger.info("Configuration achieved a performance of %f with cost %f",
                    new_y, new_c)
        logger.info("Evaluation of this configuration took %f seconds",
                    time_func_eval[-1])

        # Add new observation to the data
        X = np.concatenate((X, new_x[None, :]), axis=0)
        y = np.concatenate(
            (y, np.log(np.array([new_y]))),
            axis=0)  # Model the target function on a logarithmic scale
        c = np.concatenate(
            (c, np.log(np.array([new_c]))),
            axis=0)  # Model the cost function on a logarithmic scale

        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(
                data,
                open(os.path.join(output_path, "mtbo_iter_%d.json" % it), "w"))

    # Estimate the final incumbent
    model_objective.train(X, y)
    incumbent, incumbent_value = projected_incumbent_estimation(
        model_objective, X[:, :-1], proj_value=n_tasks - 1)
    logger.info("Final incumbent %s with estimated performance %f",
                str(incumbent), incumbent_value)

    results = dict()
    results["x_opt"] = incumbent[:-1].tolist()
    results["incumbents"] = [inc.tolist() for inc in incumbents]
    results["runtime"] = runtime
    results["overhead"] = time_overhead
    results["time_func_eval"] = time_func_eval

    results["X"] = X
    results["y"] = y
    results["c"] = c

    return results
コード例 #8
0
def fabolas(objective_function,
            lower,
            upper,
            s_min,
            s_max,
            n_init=40,
            num_iterations=100,
            subsets=[256, 128, 64],
            inc_estimation="mean",
            burnin=100,
            chain_length=100,
            n_hypers=12,
            output_path=None,
            rng=None):
    """
    Fast Bayesian Optimization of Machine Learning Hyperparameters
    on Large Datasets

    Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
    A. Klein and S. Falkner and S. Bartels and P. Hennig and F. Hutter
    http://arxiv.org/abs/1605.07079

    Parameters
    ----------
    objective_function: function
        Objective function that will be optimized
    lower: np.array(D,)
        Lower bound of the input space
    upper: np.array(D,)
        Upper bound of the input space
    s_min: int
        Minimum number of data points for the training data set
    s_max: int
        Maximum number of data points for the training data set
    n_init: int
        Number of initial design points
    n_hypers: int
        Number of hyperparameter samples for the GP
    subsets: list
        The ratio of the subsets size of the initial design.
        For example if subsets=[256, 128, 64] then the first random point from the
        initial design is evaluated on s_max/256 of the data, the second point on
        s_max/256 of the data and so on.
    num_iterations: int
        Number of iterations
    chain_length : int
        The length of the MCMC chain for each walker.
    burnin : int
        The number of burnin steps before the actual MCMC sampling starts.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict
    """

    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"
    assert lower.shape[0] == upper.shape[
        0], "Dimension miss match between upper and lower bound"

    time_start = time.time()
    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    n_dims = lower.shape[0]

    # Bookkeeping
    time_func_eval = []
    time_overhead = []
    incumbents = []
    runtime = []

    X = []
    y = []
    c = []

    # Define model for the objective function
    cov_amp = 1  # Covariance amplitude
    kernel = cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                ndim=n_dims + 1,
                                                dim=d)

    # Kernel for the environmental variable
    # We use (1-s)**2 as basis function for the Bayesian linear kernel
    degree = 1
    env_kernel = george.kernels.BayesianLinearRegressionKernel(n_dims + 1,
                                                               dim=n_dims,
                                                               degree=degree)
    env_kernel[:] = np.ones([degree + 1]) * 0.1

    kernel *= env_kernel

    # Take 3 times more samples than we have hyperparameters
    if n_hypers < 2 * len(kernel):
        n_hypers = 3 * len(kernel)
        if n_hypers % 2 == 1:
            n_hypers += 1

    prior = EnvPrior(len(kernel) + 1, n_ls=n_dims, n_lr=(degree + 1), rng=rng)

    quadratic_bf = lambda x: (1 - x)**2
    linear_bf = lambda x: x

    model_objective = FabolasGPMCMC(kernel,
                                    prior=prior,
                                    burnin_steps=burnin,
                                    chain_length=chain_length,
                                    n_hypers=n_hypers,
                                    normalize_output=False,
                                    basis_func=quadratic_bf,
                                    lower=lower,
                                    upper=upper,
                                    rng=rng)

    # Define model for the cost function
    cost_cov_amp = 1

    cost_kernel = cost_cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        cost_kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                     ndim=n_dims + 1,
                                                     dim=d)

    cost_degree = 1
    cost_env_kernel = george.kernels.BayesianLinearRegressionKernel(
        n_dims + 1, dim=n_dims, degree=cost_degree)
    cost_env_kernel[:] = np.ones([cost_degree + 1]) * 0.1

    cost_kernel *= cost_env_kernel

    cost_prior = EnvPrior(len(cost_kernel) + 1,
                          n_ls=n_dims,
                          n_lr=(cost_degree + 1),
                          rng=rng)

    model_cost = FabolasGPMCMC(cost_kernel,
                               prior=cost_prior,
                               burnin_steps=burnin,
                               chain_length=chain_length,
                               n_hypers=n_hypers,
                               basis_func=linear_bf,
                               normalize_output=False,
                               lower=lower,
                               upper=upper,
                               rng=rng)

    # Extend input space by task variable
    extend_lower = np.append(lower, 0)
    extend_upper = np.append(upper, 1)
    is_env = np.zeros(extend_lower.shape[0])
    is_env[-1] = 1

    # Define acquisition function and maximizer
    ig = InformationGainPerUnitCost(model_objective,
                                    model_cost,
                                    extend_lower,
                                    extend_upper,
                                    sampling_acquisition=EI,
                                    is_env_variable=is_env,
                                    n_representer=50)
    acquisition_func = MarginalizationGPMCMC(ig)
    maximizer = Direct(acquisition_func,
                       extend_lower,
                       extend_upper,
                       verbose=True,
                       n_func_evals=200)

    # Initial Design
    logger.info("Initial Design")

    for it in range(n_init):
        start_time_overhead = time.time()
        # Draw random configuration
        s = int(s_max / float(subsets[it]))

        x = init_random_uniform(lower, upper, 1, rng)[0]
        logger.info("Evaluate %s on subset size %d", str(x), s)
        st = time.time()
        func_val, cost = objective_function(x, s)
        time_func_eval.append(time.time() - st)

        logger.info("Configuration achieved a performance of %f with cost %f",
                    func_val, cost)
        logger.info("Evaluation of this configuration took %f seconds",
                    time_func_eval[-1])

        # Bookkeeping
        config = np.append(x, transform(s, s_min, s_max))
        X.append(config)
        y.append(np.log(
            func_val))  # Model the target function on a logarithmic scale
        c.append(np.log(cost))  # Model the cost on a logarithmic scale

        # Estimate incumbent as the best observed value so far
        best_idx = np.argmin(y)
        incumbents.append(X[best_idx][:-1])  # Incumbent is always on s=s_max

        time_overhead.append(time.time() - start_time_overhead)
        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(
                data,
                open(os.path.join(output_path, "fabolas_iter_%d.json" % it),
                     "w"))

    X = np.array(X)
    y = np.array(y)
    c = np.array(c)

    for it in range(n_init, num_iterations):
        logger.info("Start iteration %d ... ", it)

        start_time = time.time()

        # Train models
        model_objective.train(X, y, do_optimize=True)
        model_cost.train(X, c, do_optimize=True)

        if inc_estimation == "last_seen":
            # Estimate incumbent as the best observed value so far
            best_idx = np.argmin(y)
            incumbent = X[best_idx][:-1]
            incumbent = np.append(incumbent, 1)
            incumbent_value = y[best_idx]
        else:
            # Estimate incumbent by projecting all observed points to the task of interest and
            # pick the point with the lowest mean prediction
            incumbent, incumbent_value = projected_incumbent_estimation(
                model_objective, X[:, :-1], proj_value=1)
        incumbents.append(incumbent[:-1])
        logger.info("Current incumbent %s with estimated performance %f",
                    str(incumbent), np.exp(incumbent_value))

        # Maximize acquisition function
        acquisition_func.update(model_objective, model_cost)
        new_x = maximizer.maximize()

        s = retransform(new_x[-1], s_min,
                        s_max)  # Map s from log space to original linear space

        time_overhead.append(time.time() - start_time)
        logger.info("Optimization overhead was %f seconds", time_overhead[-1])

        # Evaluate the chosen configuration
        logger.info("Evaluate candidate %s on subset size %f", str(new_x[:-1]),
                    s)
        start_time = time.time()
        new_y, new_c = objective_function(new_x[:-1], s)
        time_func_eval.append(time.time() - start_time)

        logger.info("Configuration achieved a performance of %f with cost %f",
                    new_y, new_c)
        logger.info("Evaluation of this configuration took %f seconds",
                    time_func_eval[-1])

        # Add new observation to the data
        X = np.concatenate((X, new_x[None, :]), axis=0)
        y = np.concatenate(
            (y, np.log(np.array([new_y]))),
            axis=0)  # Model the target function on a logarithmic scale
        c = np.concatenate(
            (c, np.log(np.array([new_c]))),
            axis=0)  # Model the cost function on a logarithmic scale

        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(
                data,
                open(os.path.join(output_path, "fabolas_iter_%d.json" % it),
                     "w"))

    # Estimate the final incumbent
    model_objective.train(X, y, do_optimize=True)
    incumbent, incumbent_value = projected_incumbent_estimation(
        model_objective, X[:, :-1], proj_value=1)
    logger.info("Final incumbent %s with estimated performance %f",
                str(incumbent), incumbent_value)

    results = dict()
    results["x_opt"] = incumbent[:-1].tolist()
    results["incumbents"] = [inc.tolist() for inc in incumbents]
    results["runtime"] = runtime
    results["overhead"] = time_overhead
    results["time_func_eval"] = time_func_eval

    results["X"] = X
    results["y"] = y
    results["c"] = c

    return results
コード例 #9
0
ファイル: warmstart_mtbo.py プロジェクト: liuweiping2020/RoBO
def warmstart_mtbo(objective_function,
                   lower,
                   upper,
                   observed_X,
                   observed_y,
                   n_tasks=2,
                   num_iterations=30,
                   target_task_id=1,
                   burnin=100,
                   chain_length=200,
                   n_hypers=20,
                   output_path=None,
                   rng=None):
    """
    Interface to MTBO[1] which uses an auxiliary cheaper task to warm start the optimization on new but similar task.
    Note here we only warmstart the optimization process, in case you want to speed up Bayesian optimization by
    evaluating on auxiliary task during the optimization check out mtbo() or fabolas().

    [1] Multi-Task Bayesian Optimization
        K. Swersky and J. Snoek and R. Adams
        Proceedings of the 27th International Conference on Advances in Neural Information Processing Systems (NIPS'13)

    Parameters
    ----------
    objective_function: function
        Objective function that will be optimized
    lower: np.array(D,)
        Lower bound of the input space
    upper: np.array(D,)
        Upper bound of the input space
    observed_X: np.array(N, D + 1)
        observed point from the auxiliary task. Make sure that the last dimension identifies the auxiliary task
        (default=0). We assume the main task to have the task id = 1
    observed_y: np.array(N,)
        corresponding target values
    n_tasks: int
        Number of task
    target_task_id: int
        the id of the target task
    num_iterations: int
        Number of iterations
    chain_length : int
        The length of the MCMC chain for each walker.
    burnin : int
        The number of burnin steps before the actual MCMC sampling starts.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict with all results
    """

    assert lower.shape[0] == upper.shape[
        0], "Dimension miss match between upper and lower bound"

    time_start = time.time()
    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    n_dims = lower.shape[0]

    # Bookkeeping
    time_func_eval = []
    time_overhead = []
    incumbents = []
    incumbent_values = []
    runtime = []

    X = deepcopy(observed_X)
    y = deepcopy(observed_y)

    # Define model for the objective function
    cov_amp = 1  # Covariance amplitude
    kernel = cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                ndim=n_dims + 1,
                                                dim=d)

    task_kernel = george.kernels.TaskKernel(n_dims + 1, n_dims, n_tasks)
    kernel *= task_kernel

    # Take 3 times more samples than we have hyperparameters
    if n_hypers < 2 * len(kernel):
        n_hypers = 3 * len(kernel)
        if n_hypers % 2 == 1:
            n_hypers += 1

    prior = MTBOPrior(len(kernel) + 1,
                      n_ls=n_dims,
                      n_kt=len(task_kernel),
                      rng=rng)

    model_objective = MTBOGPMCMC(kernel,
                                 prior=prior,
                                 burnin_steps=burnin,
                                 chain_length=chain_length,
                                 n_hypers=n_hypers,
                                 lower=lower,
                                 upper=upper,
                                 rng=rng)

    acquisition_func = LogEI(model_objective)

    # Optimize acquisition function only on the main task
    def wrapper(x):
        x_ = np.append(x, np.ones([x.shape[0], 1]) * target_task_id, axis=1)

        if y.shape[0] == init_points:
            eta = 0
        else:
            eta = np.min(y[init_points:])
        a = acquisition_func(x_, eta=eta)
        return a

    maximizer = Direct(wrapper, lower, upper, n_func_evals=200)

    X = np.array(X)
    y = np.array(y)

    init_points = y.shape[0]

    for it in range(num_iterations):
        logger.info("Start iteration %d ... ", it)

        start_time = time.time()

        # Train models
        model_objective.train(X, y, do_optimize=True)

        # Maximize acquisition function
        acquisition_func.update(model_objective)

        new_x = maximizer.maximize()
        new_x = np.append(new_x, np.array([target_task_id]))

        time_overhead.append(time.time() - start_time)
        logger.info("Optimization overhead was %f seconds", time_overhead[-1])

        # Evaluate the chosen configuration
        logger.info("Evaluate candidate %s", str(new_x))
        start_time = time.time()
        new_y = objective_function(new_x[:-1], int(new_x[-1]))
        time_func_eval.append(time.time() - start_time)

        logger.info("Configuration achieved a performance of %f", new_y)
        logger.info("Evaluation of this configuration took %f seconds",
                    time_func_eval[-1])

        # Add new observation to the data
        X = np.concatenate((X, new_x[None, :]), axis=0)
        y = np.concatenate(
            (y, np.array([new_y])),
            axis=0)  # Model the target function on a logarithmic scale

        # Estimate incumbent as the best observed value so far
        best_idx = np.argmin(y[init_points:]) + init_points
        incumbent = X[best_idx][:-1]
        incumbent_value = y[best_idx]

        incumbents.append(incumbent)
        incumbent_values.append(incumbent_value)
        logger.info("Current incumbent %s with estimated performance %f",
                    str(incumbent), incumbent_value)

        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(
                data,
                open(os.path.join(output_path, "mtbo_iter_%d.json" % it), "w"))

    logger.info("Final incumbent %s with estimated performance %f",
                str(incumbent), incumbent_value)

    results = dict()
    results["x_opt"] = incumbent.tolist()
    results["incumbents"] = [inc.tolist() for inc in incumbents]
    results["runtime"] = runtime
    results["overhead"] = time_overhead
    results["time_func_eval"] = time_func_eval
    results["incumbent_values"] = incumbent_values
    results["X"] = X
    results["y"] = y

    return results
コード例 #10
0
ファイル: fabolas.py プロジェクト: numairmansur/RoBO
def fabolas(objective_function, lower, upper, s_min, s_max,
            n_init=40, num_iterations=100, subsets=[256, 128, 64], inc_estimation="mean",
            burnin=100, chain_length=100, n_hypers=12, output_path=None, rng=None):
    """
    Fast Bayesian Optimization of Machine Learning Hyperparameters
    on Large Datasets

    Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
    A. Klein and S. Falkner and S. Bartels and P. Hennig and F. Hutter
    http://arxiv.org/abs/1605.07079

    Parameters
    ----------
    objective_function: function
        Objective function that will be optimized
    lower: np.array(D,)
        Lower bound of the input space
    upper: np.array(D,)
        Upper bound of the input space
    s_min: int
        Minimum number of data points for the training data set
    s_max: int
        Maximum number of data points for the training data set
    n_init: int
        Number of initial design points
    n_hypers: int
        Number of hyperparameter samples for the GP
    subsets: list
        The ratio of the subsets size of the initial design.
        For example if subsets=[256, 128, 64] then the first random point from the
        initial design is evaluated on s_max/256 of the data, the second point on
        s_max/256 of the data and so on.
    num_iterations: int
        Number of iterations
    chain_length : int
        The length of the MCMC chain for each walker.
    burnin : int
        The number of burnin steps before the actual MCMC sampling starts.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict
    """

    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"
    assert lower.shape[0] == upper.shape[0], "Dimension miss match between upper and lower bound"

    time_start = time.time()
    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    n_dims = lower.shape[0]

    # Bookkeeping
    time_func_eval = []
    time_overhead = []
    incumbents = []
    runtime = []

    X = []
    y = []
    c = []

    # Define model for the objective function
    cov_amp = 1  # Covariance amplitude
    kernel = cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                ndim=n_dims+1, dim=d)

    # Kernel for the environmental variable
    # We use (1-s)**2 as basis function for the Bayesian linear kernel
    degree = 1
    env_kernel = george.kernels.BayesianLinearRegressionKernel(n_dims+1,
                                                               dim=n_dims,
                                                               degree=degree)
    env_kernel[:] = np.ones([degree + 1]) * 0.1

    kernel *= env_kernel

    # Take 3 times more samples than we have hyperparameters
    if n_hypers < 2*len(kernel):
        n_hypers = 3 * len(kernel)
        if n_hypers % 2 == 1:
            n_hypers += 1

    prior = EnvPrior(len(kernel) + 1,
                     n_ls=n_dims,
                     n_lr=(degree + 1),
                     rng=rng)

    quadratic_bf = lambda x: (1 - x) ** 2
    linear_bf = lambda x: x

    model_objective = FabolasGPMCMC(kernel,
                                    prior=prior,
                                    burnin_steps=burnin,
                                    chain_length=chain_length,
                                    n_hypers=n_hypers,
                                    normalize_output=False,
                                    basis_func=quadratic_bf,
                                    lower=lower,
                                    upper=upper,
                                    rng=rng)

    # Define model for the cost function
    cost_cov_amp = 1

    cost_kernel = cost_cov_amp

    # ARD Kernel for the configuration space
    for d in range(n_dims):
        cost_kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01,
                                                     ndim=n_dims+1, dim=d)

    cost_degree = 1
    cost_env_kernel = george.kernels.BayesianLinearRegressionKernel(n_dims+1,
                                                                    dim=n_dims,
                                                                    degree=cost_degree)
    cost_env_kernel[:] = np.ones([cost_degree + 1]) * 0.1

    cost_kernel *= cost_env_kernel

    cost_prior = EnvPrior(len(cost_kernel) + 1,
                          n_ls=n_dims,
                          n_lr=(cost_degree + 1),
                          rng=rng)

    model_cost = FabolasGPMCMC(cost_kernel,
                               prior=cost_prior,
                               burnin_steps=burnin,
                               chain_length=chain_length,
                               n_hypers=n_hypers,
                               basis_func=linear_bf,
                               normalize_output=False,
                               lower=lower,
                               upper=upper,
                               rng=rng)

    # Extend input space by task variable
    extend_lower = np.append(lower, 0)
    extend_upper = np.append(upper, 1)
    is_env = np.zeros(extend_lower.shape[0])
    is_env[-1] = 1

    # Define acquisition function and maximizer
    ig = InformationGainPerUnitCost(model_objective,
                                    model_cost,
                                    extend_lower,
                                    extend_upper,
                                    sampling_acquisition=EI,
                                    is_env_variable=is_env,
                                    n_representer=50)
    acquisition_func = MarginalizationGPMCMC(ig)
    maximizer = Direct(acquisition_func, extend_lower, extend_upper, verbose=True, n_func_evals=200)

    # Initial Design
    logger.info("Initial Design")

    for it in range(n_init):
        start_time_overhead = time.time()
        # Draw random configuration
        s = int(s_max / float(subsets[it]))

        x = init_random_uniform(lower, upper, 1, rng)[0]
        logger.info("Evaluate %s on subset size %d", str(x), s)
        st = time.time()
        func_val, cost = objective_function(x, s)
        time_func_eval.append(time.time() - st)

        logger.info("Configuration achieved a performance of %f with cost %f", func_val, cost)
        logger.info("Evaluation of this configuration took %f seconds", time_func_eval[-1])

        # Bookkeeping
        config = np.append(x, transform(s, s_min, s_max))
        X.append(config)
        y.append(np.log(func_val))  # Model the target function on a logarithmic scale
        c.append(np.log(cost))  # Model the cost on a logarithmic scale

        # Estimate incumbent as the best observed value so far
        best_idx = np.argmin(y)
        incumbents.append(X[best_idx][:-1])  # Incumbent is always on s=s_max

        time_overhead.append(time.time() - start_time_overhead)
        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(data, open(os.path.join(output_path, "fabolas_iter_%d.json" % it), "w"))

    X = np.array(X)
    y = np.array(y)
    c = np.array(c)

    for it in range(n_init, num_iterations):
        logger.info("Start iteration %d ... ", it)

        start_time = time.time()

        # Train models
        model_objective.train(X, y, do_optimize=True)
        model_cost.train(X, c, do_optimize=True)

        if inc_estimation == "last_seen":
            # Estimate incumbent as the best observed value so far
            best_idx = np.argmin(y)
            incumbent = X[best_idx][:-1]
            incumbent = np.append(incumbent, 1)
            incumbent_value = y[best_idx]
        else:
            # Estimate incumbent by projecting all observed points to the task of interest and
            # pick the point with the lowest mean prediction
            incumbent, incumbent_value = projected_incumbent_estimation(model_objective, X[:, :-1],
                                                                        proj_value=1)
        incumbents.append(incumbent[:-1])
        logger.info("Current incumbent %s with estimated performance %f",
                    str(incumbent), np.exp(incumbent_value))

        # Maximize acquisition function
        acquisition_func.update(model_objective, model_cost)
        new_x = maximizer.maximize()

        s = retransform(new_x[-1], s_min, s_max)  # Map s from log space to original linear space

        time_overhead.append(time.time() - start_time)
        logger.info("Optimization overhead was %f seconds", time_overhead[-1])

        # Evaluate the chosen configuration
        logger.info("Evaluate candidate %s on subset size %f", str(new_x[:-1]), s)
        start_time = time.time()
        new_y, new_c = objective_function(new_x[:-1], s)
        time_func_eval.append(time.time() - start_time)

        logger.info("Configuration achieved a performance of %f with cost %f", new_y, new_c)
        logger.info("Evaluation of this configuration took %f seconds", time_func_eval[-1])

        # Add new observation to the data
        X = np.concatenate((X, new_x[None, :]), axis=0)
        y = np.concatenate((y, np.log(np.array([new_y]))), axis=0)  # Model the target function on a logarithmic scale
        c = np.concatenate((c, np.log(np.array([new_c]))), axis=0)  # Model the cost function on a logarithmic scale

        runtime.append(time.time() - time_start)

        if output_path is not None:
            data = dict()
            data["optimization_overhead"] = time_overhead[it]
            data["runtime"] = runtime[it]
            data["incumbent"] = incumbents[it].tolist()
            data["time_func_eval"] = time_func_eval[it]
            data["iteration"] = it

            json.dump(data, open(os.path.join(output_path, "fabolas_iter_%d.json" % it), "w"))

    # Estimate the final incumbent
    model_objective.train(X, y, do_optimize=True)
    incumbent, incumbent_value = projected_incumbent_estimation(model_objective, X[:, :-1],
                                                                proj_value=1)
    logger.info("Final incumbent %s with estimated performance %f",
                str(incumbent), incumbent_value)

    results = dict()
    results["x_opt"] = incumbent[:-1].tolist()
    results["incumbents"] = [inc.tolist() for inc in incumbents]
    results["runtime"] = runtime
    results["overhead"] = time_overhead
    results["time_func_eval"] = time_func_eval

    results["X"] = X
    results["y"] = y
    results["c"] = c

    return results