コード例 #1
0
ファイル: train.py プロジェクト: dean12/robosat
def validate(loader, num_classes, device, net, criterion):
    num_samples = 0
    running_loss = 0

    iou = MeanIoU(range(num_classes))

    net.eval()

    for images, masks, tiles in tqdm(loader, desc="Validate", unit="batch", ascii=True):
        images = images.to(device)
        masks = masks.to(device)

        assert images.size()[2:] == masks.size()[1:], "resolutions for images and masks are in sync"

        num_samples += int(images.size(0))

        outputs = net(images)

        assert outputs.size()[2:] == masks.size()[1:], "resolutions for predictions and masks are in sync"
        assert outputs.size()[1] == num_classes, "classes for predictions and dataset are in sync"

        loss = criterion(outputs, masks)

        running_loss += loss.item()

        for mask, output in zip(masks, outputs):
            iou.add(mask.float(), output.max(0)[1].float())

    assert num_samples > 0, "dataset contains validation images and labels"

    return {"loss": running_loss / num_samples, "iou": iou.get()}
def validate(loader, num_classes, device, net, criterion):
    num_samples = 0
    running_loss = 0

    iou = MeanIoU(range(num_classes))

    net.eval()

    for images, masks, tiles in tqdm(loader, desc='Validate', unit='batch', ascii=True):
        images = images.to(device)
        masks = masks.to(device)

        assert images.size()[2:] == masks.size()[1:], 'resolutions for images and masks are in sync'

        num_samples += int(images.size(0))

        outputs = net(images)

        assert outputs.size()[2:] == masks.size()[1:], 'resolutions for predictions and masks are in sync'
        assert outputs.size()[1] == num_classes, 'classes for predictions and dataset are in sync'

        loss = criterion(outputs, masks)

        running_loss += loss.item()

        for mask, output in zip(masks, outputs):
            mask = mask.data.cpu().numpy()
            prediction = output.data.max(0)[1].cpu().numpy()
            iou.add(mask.ravel(), prediction.ravel())

    assert num_samples > 0, 'dataset contains validation images and labels'

    return {'loss': running_loss / num_samples, 'iou': iou.get()}
コード例 #3
0
ファイル: train.py プロジェクト: shepherdmeng/robosat
def validate(loader, num_classes, device, net, criterion):
    num_samples = 0
    running_loss = 0

    iou = MeanIoU(range(num_classes))

    net.eval()

    for images, masks, tiles in tqdm(loader, desc='Validate', unit='batch', ascii=True):
        images = images.to(device)
        masks = masks.to(device)

        assert images.size()[2:] == masks.size()[1:], 'resolutions for images and masks are in sync'

        num_samples += int(images.size(0))

        outputs = net(images)

        assert outputs.size()[2:] == masks.size()[1:], 'resolutions for predictions and masks are in sync'
        assert outputs.size()[1] == num_classes, 'classes for predictions and dataset are in sync'

        loss = criterion(outputs, masks)

        running_loss += loss.item()

        for mask, output in zip(masks, outputs):
            mask = mask.data.cpu().numpy()
            prediction = output.data.max(0)[1].cpu().numpy()
            iou.add(mask.ravel(), prediction.ravel())

    return {'loss': running_loss / num_samples, 'iou': iou.get()}
コード例 #4
0
ファイル: train.py プロジェクト: apburnes/robosat
def train(loader, num_classes, device, net, optimizer, scheduler, criterion):
    num_samples = 0
    running_loss = 0

    iou = MeanIoU(range(num_classes))

    net.train()
    scheduler.step()

    for images, masks, tiles in tqdm(loader,
                                     desc="Train",
                                     unit="batch",
                                     ascii=True):
        images = images.to(device)
        masks = masks.to(device)

        assert images.size()[2:] == masks.size(
        )[1:], "resolutions for images and masks are in sync"

        num_samples += int(images.size(0))

        optimizer.zero_grad()
        outputs = net(images)

        assert outputs.size()[2:] == masks.size(
        )[1:], "resolutions for predictions and masks are in sync"
        assert outputs.size(
        )[1] == num_classes, "classes for predictions and dataset are in sync"

        loss = criterion(outputs, masks)
        loss.backward()

        optimizer.step()

        running_loss += loss.item()

        for mask, output in zip(masks, outputs):
            mask = mask.data.cpu().numpy()
            prediction = output.data.max(0)[1].cpu().numpy()
            iou.add(mask.ravel(), prediction.ravel())

    assert num_samples > 0, "dataset contains training images and labels"

    return {"loss": running_loss / num_samples, "iou": iou.get()}