def test_der(self): T = 1 M = 1 b = 1 t0 = 0 x0 = 0 ocp = Ocp(t0=t0, T=T) x = ocp.state() u = ocp.control() ocp.set_der(x, u) y = 2 * x ocp.subject_to(ocp.der(y) <= 2 * b) ocp.subject_to(-2 * b <= ocp.der(y)) ocp.add_objective(ocp.at_tf(x)) ocp.subject_to(ocp.at_t0(x) == x0) ocp.solver('ipopt') ocp.method(MultipleShooting(N=4, M=M, intg='rk')) sol = ocp.solve() ts, xs = sol.sample(x, grid='control') self.assertAlmostEqual(xs[0], x0, places=6) self.assertAlmostEqual(xs[-1], x0 - b * T, places=6) self.assertAlmostEqual(ts[0], t0) self.assertAlmostEqual(ts[-1], t0 + T)
def test_integral(self): t0 = 1.2 T = 5.7 ocp = Ocp(t0=t0, T=T) x = ocp.state() u = ocp.control() ocp.set_der(x, u) ocp.subject_to(ocp.at_t0(x) == 0) ocp.subject_to(u <= 1) f = ocp.integral(x * ocp.t) ocp.add_objective(-f) # (t-t0)*t -> t^3/3-t^2/2*t0 ocp.solver('ipopt') opts = {"abstol": 1e-8, "reltol": 1e-8, "quad_err_con": True} for method in [ MultipleShooting(intg='rk'), MultipleShooting(intg='cvodes', intg_options=opts), #MultipleShooting(intg='idas',intg_options=opts), DirectCollocation() ]: ocp.method(method) sol = ocp.solve() ts, xs = sol.sample(f, grid='control') I = lambda t: t**3 / 3 - t**2 / 2 * t0 x_ref = I(t0 + T) - I(t0) assert_array_almost_equal(xs[-1], x_ref)
def vdp(method,grid='control'): ocp = Ocp(T=10) # Define 2 states x1 = ocp.state() x2 = ocp.state() # Define 1 control u = ocp.control(order=0) # Specify ODE ocp.set_der(x1, (1 - x2**2) * x1 - x2 + u) ocp.set_der(x2, x1) # Lagrange objective ocp.add_objective(ocp.integral(x1**2 + x2**2 + u**2)) # Path constraints ocp.subject_to(-1 <= (u <= 1)) ocp.subject_to(x1 >= -0.25, grid=grid) # Initial constraints ocp.subject_to(ocp.at_t0(x1) == 0) ocp.subject_to(ocp.at_t0(x2) == 1) # Pick an NLP solver backend ocp.solver('ipopt') # Pick a solution method ocp.method(method) return (ocp, x1, x2, u)
def test_param(self): ocp = Ocp(T=1) x = ocp.state() u = ocp.control() p = ocp.parameter() ocp.set_der(x, u) ocp.subject_to(u <= 1) ocp.subject_to(-1 <= u) ocp.add_objective(ocp.at_tf(x)) ocp.subject_to(ocp.at_t0(x) == p) ocp.solver('ipopt') ocp.method(MultipleShooting()) ocp.set_value(p, 0) sol = ocp.solve() ts, xs = sol.sample(x, grid='control') self.assertAlmostEqual(xs[0], 0) ocp.set_value(p, 1) sol = ocp.solve() ts, xs = sol.sample(x, grid='control') self.assertAlmostEqual(xs[0], 1)
def integrator_control_problem(T=1, u_max=1, x0=0, stage_method=None, t0=0): if stage_method is None: stage_method = MultipleShooting() ocp = Ocp(t0=t0, T=T) x = ocp.state() u = ocp.control() ocp.set_der(x, u) ocp.subject_to(u <= u_max) ocp.subject_to(-u_max <= u) ocp.add_objective(ocp.at_tf(x)) if x0 is not None: ocp.subject_to(ocp.at_t0(x) == x0) ocp.solver('ipopt') ocp.method(stage_method) return (ocp, x, u)
def test_basic_t0_free(self): xf = 2 t0 = 0 for T in [2]: for x0 in [0, 1]: for b in [1, 2]: for method in [ MultipleShooting(N=4, intg='rk'), MultipleShooting(N=4, intg='cvodes'), MultipleShooting(N=4, intg='idas'), DirectCollocation(N=4) ]: ocp = Ocp(t0=FreeTime(2), T=T) x = ocp.state() u = ocp.control() ocp.set_der(x, u) ocp.subject_to(u <= b) ocp.subject_to(-b <= u) ocp.add_objective(ocp.tf) ocp.subject_to(ocp.at_t0(x) == x0) ocp.subject_to(ocp.at_tf(x) == xf) ocp.subject_to(ocp.t0 >= 0) ocp.solver('ipopt') ocp.method(method) sol = ocp.solve() ts, xs = sol.sample(x, grid='control') self.assertAlmostEqual(xs[0], x0, places=6) self.assertAlmostEqual(xs[-1], xf, places=6) self.assertAlmostEqual(ts[0], t0) self.assertAlmostEqual(ts[-1], t0 + T)
def bang_bang_problem(stage_method): ocp = Ocp(T=FreeTime(1)) p = ocp.state() v = ocp.state() u = ocp.control() ocp.set_der(p, v) ocp.set_der(v, u) ocp.subject_to(u <= 1) ocp.subject_to(-1 <= u) ocp.add_objective(ocp.T) ocp.subject_to(ocp.at_t0(p) == 0) ocp.subject_to(ocp.at_t0(v) == 0) ocp.subject_to(ocp.at_tf(p) == 1) ocp.subject_to(ocp.at_tf(v) == 0) ocp.solver('ipopt') ocp.method(stage_method) return (ocp, ocp.solve(), p, v, u)
def test_dae_casadi(self): # cross check with dae_colloation xref = 0.1 # chariot reference l = 1. #- -> crane, + -> pendulum m = 1. M = 1. g = 9.81 ocp = Ocp(T=5) x = ocp.state() y = ocp.state() w = ocp.state() dx = ocp.state() dy = ocp.state() dw = ocp.state() xa = ocp.algebraic() u = ocp.control() ocp.set_der(x, dx) ocp.set_der(y, dy) ocp.set_der(w, dw) ddx = (w - x) * xa / m ddy = g - y * xa / m ddw = ((x - w) * xa - u) / M ocp.set_der(dx, ddx) ocp.set_der(dy, ddy) ocp.set_der(dw, ddw) ocp.add_alg((x - w) * (ddx - ddw) + y * ddy + dy * dy + (dx - dw)**2) ocp.add_objective( ocp.at_tf((x - xref) * (x - xref) + (w - xref) * (w - xref) + dx * dx + dy * dy)) ocp.add_objective( ocp.integral((x - xref) * (x - xref) + (w - xref) * (w - xref))) ocp.subject_to(-2 <= (u <= 2)) ocp.subject_to(ocp.at_t0(x) == 0) ocp.subject_to(ocp.at_t0(y) == l) ocp.subject_to(ocp.at_t0(w) == 0) ocp.subject_to(ocp.at_t0(dx) == 0) ocp.subject_to(ocp.at_t0(dy) == 0) ocp.subject_to(ocp.at_t0(dw) == 0) #ocp.subject_to(xa>=0,grid='integrator_roots') ocp.set_initial(y, l) ocp.set_initial(xa, 9.81) # Pick an NLP solver backend # NOTE: default scaling strategy of MUMPS leads to a singular matrix error ocp.solver( 'ipopt', { "ipopt.linear_solver": "mumps", "ipopt.mumps_scaling": 0, "ipopt.tol": 1e-12 }) # Pick a solution method method = DirectCollocation(N=50) ocp.method(method) # Solve sol = ocp.solve() assert_array_almost_equal( sol.sample(xa, grid='integrator', refine=1)[1][0], 9.81011622448889) assert_array_almost_equal( sol.sample(xa, grid='integrator', refine=1)[1][1], 9.865726317147214) assert_array_almost_equal( sol.sample(xa, grid='integrator')[1][0], 9.81011622448889) assert_array_almost_equal( sol.sample(xa, grid='integrator')[1][1], 9.865726317147214) assert_array_almost_equal( sol.sample(xa, grid='control')[1][0], 9.81011622448889) assert_array_almost_equal( sol.sample(xa, grid='control')[1][1], 9.865726317147214)
#Define problem parameter plant_param = {'m': 1, 'I': 1, 'L': 1, 'c': 1} model_param = {'m': 1.2, 'I': 1.2, 'L': 0.9, 'c': 0.9} N = 100 T = 10 tgrid = np.linspace(0, T, N) y_ref_val = np.sin(tgrid) x0 = [0, 0] ocp = Ocp(t0=tgrid[0], T=tgrid[-1]) # Define states x = ocp.state(2) # Define controls u = ocp.control() # Specify ODE model_rhs = pendulum_ode(x, u, model_param) ocp.set_der(x, model_rhs) # Set initial conditions ocp.subject_to(ocp.at_t0(x) == x0) # Define reference y_ref = ocp.parameter(grid='control') ocp.set_value(y_ref, y_ref_val) # Define output correction beta = ocp.parameter(grid='control')
N = 20 dt = 0.5 #effect unclear = how to connect this to rosrate ? #------------- Initialize OCP ocp = Ocp(T=N * dt) #----------------------------------- waypoints ------------------------ #------------------------- System model x = ocp.state() y = ocp.state() theta = ocp.state() v = ocp.control() w = ocp.control() #--------------------------path parameters s_obs = ocp.state() sdot_obs = ocp.control() #-----------------------------ODEs ocp.set_der(x, v * cos(theta)) ocp.set_der(y, v * sin(theta)) ocp.set_der(theta, w) ocp.set_der(s_obs, sdot_obs) #-------------------------------------------------------------------------------#