コード例 #1
0
                    cv2.addWeighted(seg_image, config.ALPHA, frame,
                                    1 - config.ALPHA, 0, frame)
                    vis_text(frame, "fps: {}".format(fps.fps_local()),
                             (10, 30))
                    # boxes (ymin, xmin, ymax, xmax)
                    if config.BBOX:
                        map_labeled = measure.label(seg_map, connectivity=1)
                        for region in measure.regionprops(map_labeled):
                            if region.area > config.MINAREA:
                                box = region.bbox
                                p1 = (box[1], box[0])
                                p2 = (box[3], box[2])
                                cv2.rectangle(frame, p1, p2, (77, 255, 9), 2)
                                vis_text(
                                    frame, config.LABEL_NAMES[seg_map[tuple(
                                        region.coords[0])]],
                                    (p1[0], p1[1] - 10))
                    cv2.imshow(config.DL_MODEL_NAME, frame)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
                fps.update()
    fps.stop()
    vs.stop()


if __name__ == '__main__':
    config = Config()
    model = Model('dl', config.DL_MODEL_NAME,
                  config.DL_MODEL_PATH).prepare_dl_model()
    segmentation(model, config)
コード例 #2
0
                models = np.squeeze(models)
                models.sort()

print("> start testing following sequention of models: \n{}".format(models))
for mod in models:
    print("> testing model: {}".format(mod))
    # conditionals
    optimized=False
    single_class=False
    # Test Model
    if 'hands' in mod or 'person' in mod:
        single_class=True
    if 'deeplab' in mod:
        config = create_test_config(mod,'DL',optimized,single_class)
        print("TEST")
        model = Model('dl', config.DL_MODEL_NAME, config.DL_MODEL_PATH).prepare_dl_model()
        segmentation(model,config)
    else:
        config = create_test_config(mod,'OD',optimized,single_class)
        model = Model('od', config.OD_MODEL_NAME, config.OD_MODEL_PATH, config.LABEL_PATH,
                    config.NUM_CLASSES, config.SPLIT_MODEL, config.SSD_SHAPE).prepare_od_model()
        detection(model,config)

    # Check if there is an optimized graph
    model_dir =  os.path.join(os.getcwd(),'models',mod)
    for root, dirs, files in os.walk(model_dir):
        for file in files:
            if 'optimized' in file:
                optimized=True
                print '> found: optimized graph'
コード例 #3
0
def main():
    config = Config()
    model = Model('od', config.OD_MODEL_NAME, config.OD_MODEL_PATH,
                  config.LABEL_PATH, config.NUM_CLASSES, config.SPLIT_MODEL,
                  config.SSD_SHAPE).prepare_od_model()
    detection(model, config)