def prepare_model(self): """ first step prepare model needs to be called by subclass in re-write process Necessary: subclass needs to init self._input_stream """ if self.config.MODEL_TYPE is 'od': self.download_model() self.load_frozen_graph() self.load_category_index() elif self.config.MODEL_TYPE is 'dl': self.download_model() self.load_frozen_graph() self.fps = FPS(self.config.FPS_INTERVAL).start() self._visualizer = Visualizer(self.config).start() return self
class Model(object): """ Base Tensorflow Inference Model Class """ def __init__(self,config): self.config = config self.detection_graph = tf.Graph() self.category_index = None self.masks = None #self._tf_config = tf.compat.v1.ConfigProto(allow_soft_placement=True) self._tf_config = tf.ConfigProto(allow_soft_placement=True) self._tf_config.gpu_options.allow_growth=True #self._tf_config.gpu_options.force_gpu_compatible=True #self._tf_config.gpu_options.per_process_gpu_memory_fraction = 0.01 self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE) self._run_metadata = False self._wait_thread = False self._is_imageD = False self._is_videoD = False self._is_rosD = False print ('> Model: {}'.format(self.config.MODEL_PATH)) def download_model(self): """ downlaods model from model_zoo """ if self.config.MODEL_TYPE == 'dl': download_base = 'http://download.tensorflow.org/models/' elif self.config.MODEL_TYPE == 'od': download_base = 'http://download.tensorflow.org/models/object_detection/' model_file = self.config.MODEL_NAME + '.tar.gz' if not os.path.isfile(self.config.MODEL_PATH) and self.config.DOWNLOAD_MODEL: print('> Model not found. Downloading it now.') opener = urllib.request.URLopener() opener.retrieve(download_base + model_file, model_file) tar_file = tarfile.open(model_file) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd() + '/models/') os.remove(os.getcwd() + '/' + model_file) else: print('> Model found. Proceed.') def node_name(self,n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def load_frozen_graph(self): """ loads graph from frozen model file """ print('> Loading frozen model into memory') if (self.config.MODEL_TYPE == 'od' and self.config.SPLIT_MODEL): # load a frozen Model and split it into GPU and CPU graphs # Hardcoded split points for ssd_mobilenet tf.reset_default_graph() if self.config.SSD_SHAPE == 600: shape = 7326 else: shape = 1917 self.score = tf.placeholder(tf.float32, shape=(None, shape, self.config.NUM_CLASSES), name=self.config.SPLIT_NODES[0]) self.expand = tf.placeholder(tf.float32, shape=(None, shape, 1, 4), name=self.config.SPLIT_NODES[1]) #self.tofloat = tf.placeholder(tf.float32, shape=(None), name=self.config.SPLIT_NODES[2]) for node in tf.get_default_graph().as_graph_def().node: if node.name == self.config.SPLIT_NODES[0]: score_def = node if node.name == self.config.SPLIT_NODES[1]: expand_def = node #if node.name == self.config.SPLIT_NODES[2]: # tofloat_def = node with self.detection_graph.as_default(): graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) edges = {} name_to_node_map = {} node_seq = {} seq = 0 for node in graph_def.node: n = self.node_name(node.name) name_to_node_map[n] = node edges[n] = [self.node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in self.config.SPLIT_NODES: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() next_to_visit = self.config.SPLIT_NODES[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) nodes_to_remove = set() for n in node_seq: if n in nodes_to_keep_list: continue nodes_to_remove.add(n) nodes_to_remove_list = sorted(list(nodes_to_remove), key=lambda n: node_seq[n]) keep = graph_pb2.GraphDef() for n in nodes_to_keep_list: keep.node.extend([copy.deepcopy(name_to_node_map[n])]) remove = graph_pb2.GraphDef() remove.node.extend([score_def]) remove.node.extend([expand_def]) for n in nodes_to_remove_list: remove.node.extend([copy.deepcopy(name_to_node_map[n])]) with tf.device('/gpu:0'): tf.import_graph_def(keep, name='') with tf.device('/cpu:0'): tf.import_graph_def(remove, name='') else: # default model loading procedure with self.detection_graph.as_default(): graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) tf.import_graph_def(graph_def, name='') def load_category_index(self): """ creates categorie_index from label_map """ print('> Loading label map') label_map = tf_utils.load_labelmap(self.config.LABEL_PATH) categories = tf_utils.convert_label_map_to_categories(label_map, max_num_classes=self.config.NUM_CLASSES, use_display_name=True) self.category_index = tf_utils.create_category_index(categories) def get_tensor_dict(self, outputs): """ returns tensordict for given tensornames list """ ops = self.detection_graph.get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} self.tensor_dict = {} for key in outputs: tensor_name = key + ':0' if tensor_name in all_tensor_names: self.tensor_dict[key] = self.detection_graph.get_tensor_by_name(tensor_name) return self.tensor_dict def prepare_model(self): """ first step prepare model needs to be called by subclass in re-write process Necessary: subclass needs to init self._input_stream """ if self.config.MODEL_TYPE is 'od': self.download_model() self.load_frozen_graph() self.load_category_index() elif self.config.MODEL_TYPE is 'dl': self.download_model() self.load_frozen_graph() self.fps = FPS(self.config.FPS_INTERVAL).start() self._visualizer = Visualizer(self.config).start() return self def isActive(self): """ checks if stream and visualizer are active """ return self._input_stream.isActive() and self._visualizer.isActive() def stop(self): """ stops all Model sub classes """ self._input_stream.stop() self._visualizer.stop() self.fps.stop() if self.config.SPLIT_MODEL and self.config.MODEL_TYPE is 'od': self._gpu_worker.stop() self._cpu_worker.stop() def detect(self): """ needs to be written by subclass """ self.detection = None def run(self): """ runs detection loop on video or image listens on isActive() """ print("> starting detection") self.start() while self.isActive(): # detection self.detect() # Visualization if not self._wait_thread: self.visualize_detection() self.fps.update() self.stop() def start(self): """ starts fps and visualizer class """ self.fps.start() self._visualizer = Visualizer(self.config).start() def visualize_detection(self): self.detection = self._visualizer.visualize_detection(self.frame,self.boxes, self.classes,self.scores, self.masks,self.fps.fps_local(), self.category_index,self._is_imageD) def prepare_ros(self,node): """ prepares ros Node and ROSInputstream only in ros branch usable due to ROS realted package stuff """ assert node in ['detection_node','deeplab_node'], "only 'detection_node' and 'deeplab_node' supported" import rospy from ros import ROSStream, DetectionPublisher, SegmentationPublisher self._is_rosD = True rospy.init_node(node) self._input_stream = ROSStream(self.config.ROS_INPUT) if node is 'detection_node': self._ros_publisher = DetectionPublisher() if node is 'deeplab_node': self._ros_publisher = SegmentationPublisher() # check for frame while True: self.frame = self._input_stream.read() time.sleep(1) print("...waiting for ROS image") if self.frame is not None: self.stream_height,self.stream_width = self.frame.shape[0:2] break def prepare_timeliner(self): """ prepares timeliner and sets tf Run options """ self._run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) self._run_metadata = tf.RunMetadata() self.timeliner = TimeLiner() def prepare_tracker(self): """ prepares KCF tracker """ sys.path.append(os.getcwd()+'/rod/kcf') import KCF self._tracker = KCF.kcftracker(False, True, False, False) self._tracker_counter = 0 self._track = False def run_tracker(self): """ runs KCF tracker on videoStream frame !does not work on images, obviously! """ self.frame = self._input_stream.read() if self._first_track: self._trackers = [] self._tracker_boxes = self.boxes num_tracked = 0 for box in self.boxes[~np.all(self.boxes == 0, axis=1)]: self._tracker.init(conv_detect2track(box,self._input_stream.real_width, self._input_stream.real_height),self.tracker_frame) self._trackers.append(self._tracker) num_tracked += 1 if num_tracked <= self.config.NUM_TRACKERS: break self._first_track = False for idx,self._tracker in enumerate(self._trackers): tracker_box = self._tracker.update(self.frame) self._tracker_boxes[idx,:] = conv_track2detect(tracker_box, self._input_stream.real_width, self._input_stream.real_height) self._tracker_counter += 1 self.boxes = self._tracker_boxes # Deactivate Tracker if self._tracker_counter >= self.config.TRACKER_FRAMES: self._track = False self._tracker_counter = 0 def activate_tracker(self): """ activates KCF tracker deactivates mask detection """ #self.masks = None self.tracker_frame = self.frame self._track = True self._first_track = True
def start(self): """ starts fps and visualizer class """ self.fps.start() self._visualizer = Visualizer(self.config).start()
class Model(object): """ Base Tensorflow Inference Model Class """ def __init__(self, config): self.config = config self.detection_graph = tf.Graph() self.category_index = None self.masks = None self._tf_config = tf.ConfigProto(allow_soft_placement=True) self._tf_config.gpu_options.allow_growth = True self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE) self._run_metadata = False self._wait_thread = False print('> Model: {}'.format(self.config.MODEL_PATH)) def download_model(self): """ downlaods model from model_zoo """ if self.config.MODEL_TYPE == 'dl': download_base = 'http://download.tensorflow.org/models/' elif self.config.MODEL_TYPE == 'od': download_base = 'http://download.tensorflow.org/models/object_detection/' model_file = self.config.MODEL_NAME + '.tar.gz' if not os.path.isfile( self.config.MODEL_PATH) and self.config.DOWNLOAD_MODEL: print('> Model not found. Downloading it now.') opener = urllib.request.URLopener() opener.retrieve(download_base + model_file, model_file) tar_file = tarfile.open(model_file) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd() + '/models/') os.remove(os.getcwd() + '/' + model_file) else: print('> Model found. Proceed.') def _node_name(self, n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def load_frozenmodel(self): """ loads graph from frozen model file """ print('> Loading frozen model into memory') if (self.config.MODEL_TYPE == 'od' and self.config.SPLIT_MODEL): # load a frozen Model and split it into GPU and CPU graphs # Hardcoded split points for ssd_mobilenet input_graph = tf.Graph() with tf.Session(graph=input_graph, config=self._tf_config): if self.config.SSD_SHAPE == 600: shape = 7326 else: shape = 1917 self.score = tf.placeholder(tf.float32, shape=(None, shape, self.config.NUM_CLASSES), name=self.config.SPLIT_NODES[0]) self.expand = tf.placeholder(tf.float32, shape=(None, shape, 1, 4), name=self.config.SPLIT_NODES[1]) for node in input_graph.as_graph_def().node: if node.name == self.config.SPLIT_NODES[0]: score_def = node if node.name == self.config.SPLIT_NODES[1]: expand_def = node with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) edges = {} name_to_node_map = {} node_seq = {} seq = 0 for node in od_graph_def.node: n = self._node_name(node.name) name_to_node_map[n] = node edges[n] = [self._node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in self.config.SPLIT_NODES: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() next_to_visit = self.config.SPLIT_NODES[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) nodes_to_remove = set() for n in node_seq: if n in nodes_to_keep_list: continue nodes_to_remove.add(n) nodes_to_remove_list = sorted(list(nodes_to_remove), key=lambda n: node_seq[n]) keep = graph_pb2.GraphDef() for n in nodes_to_keep_list: keep.node.extend([copy.deepcopy(name_to_node_map[n])]) remove = graph_pb2.GraphDef() remove.node.extend([score_def]) remove.node.extend([expand_def]) for n in nodes_to_remove_list: remove.node.extend( [copy.deepcopy(name_to_node_map[n])]) with tf.device('/gpu:0'): tf.import_graph_def(keep, name='') with tf.device('/cpu:0'): tf.import_graph_def(remove, name='') else: # default model loading procedure with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') def load_labelmap(self): """ creates categorie_index from label_map """ print('> Loading label map') label_map = tf_utils.load_labelmap(self.config.LABEL_PATH) categories = tf_utils.convert_label_map_to_categories( label_map, max_num_classes=self.config.NUM_CLASSES, use_display_name=True) self.category_index = tf_utils.create_category_index(categories) def get_tensordict(self, outputs): """ returns tensordict for given tensornames list """ ops = self.detection_graph.get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} self.tensor_dict = {} for key in outputs: tensor_name = key + ':0' if tensor_name in all_tensor_names: self.tensor_dict[ key] = self.detection_graph.get_tensor_by_name(tensor_name) return self.tensor_dict def prepare_model(self): """ first step prepare model needs to be called by subclass in re-write process Necessary: subclass needs to init self._input_stream """ if self.config.MODEL_TYPE is 'od': self.download_model() self.load_frozenmodel() self.load_labelmap() elif self.config.MODEL_TYPE is 'dl': self.download_model() self.load_frozenmodel() self.fps = FPS(self.config.FPS_INTERVAL).start() self._visualizer = Visualizer(self.config).start() return self def isActive(self): """ checks if stream and visualizer are active """ return self._input_stream.isActive() and self._visualizer.isActive() def stop(self): """ stops all sub classes """ self._input_stream.stop() self._visualizer.stop() self.fps.stop() if self.config.SPLIT_MODEL and self.config.MODEL_TYPE is 'od': self._gpu_worker.stop() self._cpu_worker.stop() def detect(self): """ needs to be written by subclass """ self.detection = None def run(self): """ runs detection loop on video or image listens on isActive() """ print("> starting detection") self.start() while self.isActive(): # detection self.detect() # Visualization if not self._wait_thread: self.visualize_detection() self.fps.update() self.stop() def start(self): """ starts fps and visualizer class """ self.fps.start() self._visualizer = Visualizer(self.config).start() def visualize_detection(self): self.detection = self._visualizer.visualize_detection( self.frame, self.boxes, self.classes, self.scores, self.masks, self.fps.fps_local(), self.category_index)