コード例 #1
0
ファイル: tests.py プロジェクト: pablodecm/root_numpy
def check_random_sample(obj):
    sample = rnp.random_sample(obj, 100)
    ndim = getattr(obj, 'GetDimension', getattr(obj, 'GetNdim', None))()
    if ndim > 1:
        assert_equal(sample.shape, (100, ndim))
    else:
        assert_equal(sample.shape, (100, ))
    a = rnp.random_sample(obj, 10, seed=1)
    b = rnp.random_sample(obj, 10, seed=1)
    c = rnp.random_sample(obj, 10, seed=2)
    assert_array_equal(a, b)
    assert_true((a != c).any())
コード例 #2
0
    def __populate(self, muons):

        # For each muon in the batch, draw injection times and kinematics variables.
        if self.sourceMode == "Mixture":
            offsets = self.sourceTimeDistribution.draw(choices=muons)
            kinematics = self.sourceKinematicsDistribution.draw(choices=muons)
        elif self.sourceMode == "Histogram1D":
            offsets = rnp.random_sample(self.sourceTimeHistogram, muons)
            kinematics = rnp.random_sample(self.sourceKinematicsHistogram,
                                           muons)
        elif self.sourceMode == "Histogram2D":
            samples = rnp.random_sample(self.sourceJointHistogram, muons)
            offsets = samples[:, 0]
            kinematics = samples[:, 1]
        else:
            raise ValueError(f"Input mode '{self.sourceMode}' not recognized.")

        # Apply the correlation polynomial to the kinematics variables.
        if self.sourceMode in ["Mixture", "Histogram1D"]:
            kinematics += np.polyval(self.sourceCorrelation, offsets)

        # Convert injection times to nanoseconds.
        if self.sourceTimeUnits == "nanoseconds":
            pass
        elif self.sourceTimeUnits == "microseconds":
            offsets *= 1E3
        elif self.sourceTimeUnits == "seconds":
            offsets *= 1E9
        else:
            raise ValueError(
                f"Time unit '{self.sourceTimeUnits}' not recognized.")

        # Center the mean injection time to zero (as a definition).
        offsets -= np.average(offsets)

        # Convert kinematics parameters to cyclotron frequencies.
        if self.sourceKinematicsVariable == "frequency":
            frequencies = kinematics
        elif self.sourceKinematicsVariable == "momentum":
            frequencies = utilities.momentumToFrequency(kinematics)
        elif self.sourceKinematicsVariable == "offset":
            frequencies = utilities.offsetToFrequency(kinematics)
        else:
            raise ValueError(
                f"Kinematics variable '{self.sourceKinematicsVariable}' not recognized."
            )

        # Mask unphysical frequencies.
        mask = (frequencies >= utilities.min["f"]) & (frequencies <=
                                                      utilities.max["f"])

        return offsets[mask], frequencies[mask]
コード例 #3
0
def check_random_sample(obj):
    sample = rnp.random_sample(obj, 100)
    ndim = getattr(obj, 'GetDimension',
                   getattr(obj, 'GetNdim', None))()
    if ndim > 1:
        assert_equal(sample.shape, (100, ndim))
    else:
        assert_equal(sample.shape, (100,))
    a = rnp.random_sample(obj, 10, seed=1)
    b = rnp.random_sample(obj, 10, seed=1)
    c = rnp.random_sample(obj, 10, seed=2)
    assert_array_equal(a, b)
    assert_true((a != c).any())
コード例 #4
0
def generate_zmq_package(n_events=1):
    #n_events -> package with that many events
    package = {}
    for feature in hists.keys():
        hist = hists[feature]
        arr = random_sample(hist, n_events)
        package[feature] = arr
    return package
コード例 #5
0
ファイル: mymodule.py プロジェクト: nkarast/Snippets
def random_sample_hist(hist, nsamples=1, seed=0):
    """
    return a numpy array with random samples (samplings)
    which are taken randomly from a histogram.
    The sampling sequence starts with a random seed if seed == 0
    Inputs : histogram (TH1, TH2, TH3) , # of samplings, seed (default=0)
    """
    from ROOT import TH1, TH2, TH3
    from root_numpy import random_sample
    info('(random_sample_hist) getting random sample of %f with seed %f from histogram ' %(nsamples, seed))
    return random_sample(hist, nsamples, seed)
コード例 #6
0
ファイル: mymodule.py プロジェクト: nkarast/Snippets
def random_sample_func(func, nsamplings=1, seed=0):
    """
        return a numpy array with random samples (samplings)
        which are taken randomly from a function.
        The sampling sequence starts with a random seed if seed == 0
        Inputs : function (TF1, TF2, TF3) , # of samplings, seed (default=0)
    """
    from ROOT import TF1, TF2, TF3
    from root_numpy import random_sample
    info('(random_sample_hist) getting random sample of %f with seed %f from function ' % (nsamplings, seed))
    return random_sample(func, nsamplings, seed)
コード例 #7
0
ファイル: tests.py プロジェクト: kratsg/root_numpy_dev
def test_random_sample_h3():
    hist = TH3D("h3", "h3", 10, -3, 3, 10, -3, 3, 10, -3, 3)
    sample = rnp.random_sample(hist, 100)
    assert_equal(sample.shape, (100, 3))
コード例 #8
0
ファイル: tests.py プロジェクト: kratsg/root_numpy_dev
def test_random_sample_h2():
    hist = TH2D("h2", "h2", 10, -3, 3, 10, -3, 3)
    sample = rnp.random_sample(hist, 100)
    assert_equal(sample.shape, (100, 2))
コード例 #9
0
ファイル: tests.py プロジェクト: kratsg/root_numpy_dev
def test_random_sample_h1():
    hist = TH1D("h1", "h1", 10, -3, 3)
    sample = rnp.random_sample(hist, 100)
    assert_equal(sample.shape, (100,))
コード例 #10
0
ファイル: tests.py プロジェクト: kratsg/root_numpy_dev
def test_random_sample_f3():
    func = TF3("f3", "sin(x)*sin(y)*sin(z)/(x*y*z)")
    sample = rnp.random_sample(func, 100)
    assert_equal(sample.shape, (100, 3))
コード例 #11
0
ファイル: tests.py プロジェクト: kratsg/root_numpy_dev
def test_random_sample_f2():
    func = TF2("f2", "sin(x)*sin(y)/(x*y)")
    sample = rnp.random_sample(func, 100)
    assert_equal(sample.shape, (100, 2))
コード例 #12
0
ファイル: tests.py プロジェクト: kratsg/root_numpy_dev
def test_random_sample_f1():
    func = TF1("f1", "TMath::DiLog(x)")
    sample = rnp.random_sample(func, 100)
    assert_equal(sample.shape, (100,))
    rnp.random_sample(func, 100, seed=1)
コード例 #13
0
import matplotlib as mat
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import ROOT
import root_numpy as rnp
import pylandau

# Seaborn configuration an Latex
sns.set(rc={"figure.figsize":(8,4)})
sns.set_context('paper',font_scale=1.0,rc={'lines.linewidth':1.0})
sns.set_style('whitegrid')
mat.rc('text',usetex=True)
mat.rc('font',family='serif',serif='palatino')
mat.rcParams['text.latex.preamble']=[r'\usepackage[utf8]{inputenc}',r'\usepackage[T1]{fontenc}',r'\usepackage[spanish]{babel}',r'\usepackage{amsmath,amsfonts,amssymb}',r'\usepackage{siunitx}']

# I will generate random variable "time" with a Landau distribution -- useful to model single photoelectron response from PMT
time=np.arange(400,700,0.01)
dtau=ROOT.TF1('tau0','TMath::Landau(x,492.145,7.59229,1)')
tau=rnp.evaluate(dtau,time) # PDF --it may also be generated with pylandau

# generate Nevents random samples from the distribution
Nevents=1000000
rnd_tau=rnp.random_sample(ROOT.TF1('tau0','TMath::Landau(x,492.145,7.59229,1)',400,700),Nevents,seed=1)
c=sns.color_palette(sns.cubehelix_palette(8,start=.25,rot=-.75,reverse=True))
fig,ax=plt.subplots(nrows=1,ncols=1)
plt.plot(time,tau,color=c[0]) #plotting the PDF and the distribution of the samples
sns.distplot(rnd_tau,hist=True,kde=False,rug=False,ax=ax,norm_hist=True,
hist_kws={'histtype':'stepfilled','alpha':0.9},color=c[1])
plt.show()
コード例 #14
0
tpeaks=[75,100,125,150,175]
mpar=np.size(cf)*np.size(rf)*np.size(tpeaks)

j=0
jphoton=0
for line in f:
  p[j,jphoton]=t0
  nphe[j]=jphoton+1
  k=np.fromstring(line,dtype=np.float,count=4,sep=' ')
  nevent=k[0]
  t0=k[2]
  if n0!=nevent:
    n0=nevent
    ptimes=p[j,p[j,:]!=0]
    if np.all(ptimes<200.0):
      rnd_tau=rnp.random_sample(taud,jphoton+1)
      q=stats.norm.rvs(loc=Qpmt,scale=sqpmt,size=jphoton+1)
      k=q/(2.0*rnd_tau)
      tnorm=(t-np.transpose(ptimes[np.newaxis]))/np.transpose(rnd_tau[np.newaxis])
      u=t>np.transpose(ptimes[np.newaxis])
      izero=np.transpose(k[np.newaxis])*np.power(tnorm,alpha)*np.exp(-1.0*tnorm)*u
      iphe[j,:]=np.sum(izero,axis=0)
    j+=1
    jphoton=0
  else:
    jphoton+=1

test=np.logical_and(nphe!=0,np.sum(p!=0,axis=1)>=1.0)
nphe=nphe[test]
p=p[test]
iphe=iphe[test,:]