def main(): args = docopt.docopt(__doc__) print(args) cluster.require_qsub() workspace = pipeline.workspace_from_dir(args['<workspace>']) # If not a fragment workspace, make a new one if not hasattr(workspace, 'fasta_path'): step = workspace.get_next_step() workspace = pipeline.ValidationWorkspace(workspace.root_dir, step) workspace.check_paths() workspace.make_dirs() workspace.clear_fragments() inputs = pick_inputs(workspace) if not inputs: print('All inputs already have fragments') # if not '--input_model' in args: # model = workspace.input_pdb_path # else: # model = args['--input_model'] # Run the fragment generation script. generate_fragments = [ 'klab_generate_fragments', '--outdir', workspace.fragments_dir, '--memfree', args['--mem-free'], ] + inputs if not args['--ignore-loop-file']: generate_fragments += [ '--loops_file', workspace.loops_path, ] if args['--dry-run']: print(' '.join(generate_fragments)) else: subprocess.call(generate_fragments)
def get_workspace(root_dir, step): return pipeline.ValidationWorkspace(root_dir, step)
def get_workspace(root_dir, step): ''' Provides information to the submission script about the workspace ''' return pipeline.ValidationWorkspace(root_dir, step)