コード例 #1
0
def analytical(R_initialOrientation=np.eye(3),
               omega=np.zeros((5, 3)),
               initialPosition=np.zeros(3),
               accMeasured=np.column_stack((np.zeros((5, 2)), g * np.ones(5))),
               rate=128):

    ####################################################################################
    #                                                                                  #
    #  github.com/thomas-haslwanter/scikit-kinematics/blob/master/skinematics/imus.py  #
    #  Analytically reconstructing accmtr. position and orientation, using angular     #
    #  velocity and linear acceleration. Assumes a start in a stationary position.     #
    #  Needs auxiliary libraries - quat.py, vector.py, rotmat.py.                      #
    #  Parameters                                                                      #
    #  ------------------------------------------------------------------------------  #
    #  R_initialOrientation : ndarray(3,3) --------- Rotation matrix describing        #
    #  the sensor's initial orientation, except for a mis-orientation w/rt gravity.    #
    #  omega : ndarray(N,3) ------------------------ Angular velocity, in [rad/s]      #
    #  initialPosition : ndarray(3,) --------------- Initial position, in [m]          #
    #  accMeasured : ndarray(N,3) ------------------ Linear acceleration, in [m/s^2]   #
    #  rate : float -------------------------------- Sampling rate, in [Hz]            #
    #  Returns                                                                         #
    #  ------------------------------------------------------------------------------  #
    #  q : ndarray(N,3) ---------------------------- Orientation - quaternion vector   #
    #  pos : ndarray(N,3) -------------------------- Position in space [m]             #
    #  vel : ndarray(N,3) -------------------------- Velocity in space [m/s]           #
    #                                                                                  #
    ####################################################################################

    # Transform recordings to angVel/acceleration in space -------------------------
    # ----- Find gravity's orientation on the sensor in "R_initialOrientation" -----
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0, 0, g])
    # ----- For the remaining deviation, assume the shortest rotation to there. ----
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)
    q_initial = rotmat.convert(R_initialOrientation, to='quat')
    # ----- Combine the two to form a reference orientation. -----------------------
    q_ref = quat.q_mult(q_initial, q0)

    # Compute orientation q by "integrating" omega ---------------------------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position -----------------------------------------
    # ----- Using q and the measured acceleration, get the \frac{d^2x}{dt^2} -------
    g_v = np.r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)
    # ----- Make the first position the reference position -------------------------
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # Done. ------------------------------------------------------------------------
    return q
コード例 #2
0
def kalman(rate, acc, omega, mag):
    '''
    Calclulate the orientation from IMU magnetometer data.

    Parameters
    ----------
    rate : float
    	   sample rate [Hz]	
    acc : (N,3) ndarray
    	  linear acceleration [m/sec^2]
    omega : (N,3) ndarray
    	  angular velocity [rad/sec]
    mag : (N,3) ndarray
    	  magnetic field orientation

    Returns
    -------
    qOut : (N,4) ndarray
    	   unit quaternion, describing the orientation relativ to the coordinate system spanned by the local magnetic field, and gravity

    Notes
    -----
    Based on "Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman, E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006)

    '''

    numData = len(acc)

    # Set parameters for Kalman Filter
    tstep = 1. / rate
    tau = [0.5, 0.5, 0.5]  # from Yun, 2006

    # Initializations
    x_k = np.zeros(7)  # state vector
    z_k = np.zeros(7)  # measurement vector
    z_k_pre = np.zeros(7)
    P_k = np.matrix(np.eye(7))  # error covariance matrix P_k

    Phi_k = np.matrix(np.zeros(
        (7, 7)))  # discrete state transition matrix Phi_k
    for ii in range(3):
        Phi_k[ii, ii] = np.exp(-tstep / tau[ii])

    H_k = np.eye(7)  # Identity matrix

    Q_k = np.zeros((7, 7))  # process noise matrix Q_k
    #D = 0.0001*np.r_[0.4, 0.4, 0.4]		# [rad^2/sec^2]; from Yun, 2006
    D = np.r_[0.4, 0.4, 0.4]  # [rad^2/sec^2]; from Yun, 2006

    for ii in range(3):
        Q_k[ii,
            ii] = D[ii] / (2 * tau[ii]) * (1 - np.exp(-2 * tstep / tau[ii]))

    # Evaluate measurement noise covariance matrix R_k
    R_k = np.zeros((7, 7))
    r_angvel = 0.01
    # [rad**2/sec**2]; from Yun, 2006
    r_quats = 0.0001
    # from Yun, 2006
    for ii in range(7):
        if ii < 3:
            R_k[ii, ii] = r_angvel
        else:
            R_k[ii, ii] = r_quats

    # Calculation of orientation for every time step
    qOut = np.zeros((numData, 4))

    for ii in range(numData):
        accelVec = acc[ii, :]
        magVec = mag[ii, :]
        angvelVec = omega[ii, :]
        z_k_pre = z_k.copy(
        )  # watch out: by default, Python passes the reference!!

        # Evaluate quaternion based on acceleration and magnetic field data
        accelVec_n = vector.normalize(accelVec)
        magVec_hor = magVec - accelVec_n * (accelVec_n @ magVec)
        magVec_n = vector.normalize(magVec_hor)
        basisVectors = np.vstack((magVec_n, np.cross(accelVec_n,
                                                     magVec_n), accelVec_n)).T
        quatRef = quat.q_inv(rotmat.convert(basisVectors, to='quat')).flatten()

        # Update measurement vector z_k
        z_k[:3] = angvelVec
        z_k[3:] = quatRef

        # Calculate Kalman Gain
        # K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k)
        K_k = P_k @ np.linalg.inv(P_k + R_k)

        # Update state vector x_k
        x_k += np.array(K_k.dot(z_k - z_k_pre)).ravel()

        # Evaluate discrete state transition matrix Phi_k
        Phi_k[3, :] = np.r_[-x_k[4] * tstep / 2, -x_k[5] * tstep / 2,
                            -x_k[6] * tstep / 2, 1, -x_k[0] * tstep / 2,
                            -x_k[1] * tstep / 2, -x_k[2] * tstep / 2]
        Phi_k[4, :] = np.r_[x_k[3] * tstep / 2, -x_k[6] * tstep / 2,
                            x_k[5] * tstep / 2, x_k[0] * tstep / 2, 1,
                            x_k[2] * tstep / 2, -x_k[1] * tstep / 2]
        Phi_k[5, :] = np.r_[x_k[6] * tstep / 2, x_k[3] * tstep / 2,
                            -x_k[4] * tstep / 2, x_k[1] * tstep / 2,
                            -x_k[2] * tstep / 2, 1, x_k[0] * tstep / 2]
        Phi_k[6, :] = np.r_[-x_k[5] * tstep / 2, x_k[4] * tstep / 2,
                            x_k[3] * tstep / 2, x_k[2] * tstep / 2,
                            x_k[1] * tstep / 2, -x_k[0] * tstep / 2, 1]

        # Update error covariance matrix
        #P_k = (eye(7)-K_k*H_k)*P_k
        P_k = (np.eye(7) - K_k) @ P_k

        # Projection of state quaternions
        x_k[3:] += 0.5 * quat.q_mult(x_k[3:], np.r_[0, x_k[:3]]).flatten()
        x_k[3:] = vector.normalize(x_k[3:])
        x_k[:3] = np.zeros(3)
        x_k[:3] += tstep * (-x_k[:3] + z_k[:3])

        qOut[ii, :] = x_k[3:]

        # Projection of error covariance matrix
        P_k = Phi_k @ P_k @ Phi_k.T + Q_k

    # Make the first position the reference position
    qOut = quat.q_mult(qOut, quat.q_inv(qOut[0]))

    return qOut
コード例 #3
0
def analytical(
        R_initialOrientation=np.eye(3),
        omega=np.zeros((5, 3)),
        initialPosition=np.zeros(3),
        accMeasured=np.column_stack((np.zeros((5, 2)), 9.81 * np.ones(5))),
        rate=100):
    ''' Reconstruct position and orientation with an analytical solution,
    from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]
    vel : ndarray(N,3)
        Velocity in space [m/s]

    Example
    -------
     
    >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = constants.g
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0, 0, g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)

    q_initial = rotmat.convert(R_initialOrientation, to='quat')

    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    q_ref = quat.q_mult(q_initial, q0)

    # Calculate orientation q by "integrating" omega -----------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = np.r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan * np.ones_like(accReSpace)
    pos = np.nan * np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:, ii] = cumtrapz(accReSpace[:, ii], dx=1. / rate, initial=0)
        pos[:, ii] = cumtrapz(vel[:, ii],
                              dx=1. / rate,
                              initial=initialPosition[ii])

    return (q, pos, vel)
コード例 #4
0
def kalman(rate, acc, omega, mag):
    '''
    Calclulate the orientation from IMU magnetometer data.

    Parameters
    ----------
    rate : float
    	   sample rate [Hz]	
    acc : (N,3) ndarray
    	  linear acceleration [m/sec^2]
    omega : (N,3) ndarray
    	  angular velocity [rad/sec]
    mag : (N,3) ndarray
    	  magnetic field orientation

    Returns
    -------
    qOut : (N,4) ndarray
    	   unit quaternion, describing the orientation relativ to the coordinate system spanned by the local magnetic field, and gravity

    Notes
    -----
    Based on "Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman, E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006)

    '''

    numData = len(acc)

    # Set parameters for Kalman Filter
    tstep = 1./rate
    tau = [0.5, 0.5, 0.5]	# from Yun, 2006

    # Initializations 
    x_k = np.zeros(7)	# state vector
    z_k = np.zeros(7)   # measurement vector
    z_k_pre = np.zeros(7)
    P_k = np.matrix( np.eye(7) )		 # error covariance matrix P_k

    Phi_k = np.matrix( np.zeros((7,7)) ) # discrete state transition matrix Phi_k
    for ii in range(3):
        Phi_k[ii,ii] = np.exp(-tstep/tau[ii])

    H_k = np.eye(7)		# Identity matrix

    Q_k = np.zeros((7,7)) 	# process noise matrix Q_k
    #D = 0.0001*np.r_[0.4, 0.4, 0.4]		# [rad^2/sec^2]; from Yun, 2006
    D = np.r_[0.4, 0.4, 0.4]		# [rad^2/sec^2]; from Yun, 2006
               
    for ii in range(3):
        Q_k[ii,ii] =  D[ii]/(2*tau[ii])  * ( 1-np.exp(-2*tstep/tau[ii]) )

    # Evaluate measurement noise covariance matrix R_k
    R_k = np.zeros((7,7)) 
    r_angvel = 0.01;      # [rad**2/sec**2]; from Yun, 2006
    r_quats = 0.0001;     # from Yun, 2006
    for ii in range(7):
        if ii<3:
            R_k[ii,ii] = r_angvel
        else:
            R_k[ii,ii] = r_quats

    # Calculation of orientation for every time step
    qOut = np.zeros( (numData,4) )

    for ii in range(numData):
        accelVec  = acc[ii,:]
        magVec    = mag[ii,:]
        angvelVec = omega[ii,:]
        z_k_pre = z_k.copy()	# watch out: by default, Python passes the reference!!

        # Evaluate quaternion based on acceleration and magnetic field data
        accelVec_n = vector.normalize(accelVec)
        magVec_hor = magVec - accelVec_n * (accelVec_n @ magVec)
        magVec_n   = vector.normalize(magVec_hor)
        basisVectors = np.vstack( (magVec_n, np.cross(accelVec_n, magVec_n), accelVec_n) ).T
        quatRef = quat.q_inv(rotmat.convert(basisVectors, to='quat')).flatten()

        # Update measurement vector z_k
        z_k[:3] = angvelVec
        z_k[3:] = quatRef

        # Calculate Kalman Gain
        # K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k)
        K_k = P_k @ np.linalg.inv(P_k + R_k)

        # Update state vector x_k
        x_k += np.array( K_k.dot(z_k-z_k_pre) ).ravel()

        # Evaluate discrete state transition matrix Phi_k
        Phi_k[3,:] = np.r_[-x_k[4]*tstep/2, -x_k[5]*tstep/2, -x_k[6]*tstep/2,              1, -x_k[0]*tstep/2, -x_k[1]*tstep/2, -x_k[2]*tstep/2]
        Phi_k[4,:] = np.r_[ x_k[3]*tstep/2, -x_k[6]*tstep/2,  x_k[5]*tstep/2, x_k[0]*tstep/2,               1,  x_k[2]*tstep/2, -x_k[1]*tstep/2]
        Phi_k[5,:] = np.r_[ x_k[6]*tstep/2,  x_k[3]*tstep/2, -x_k[4]*tstep/2, x_k[1]*tstep/2, -x_k[2]*tstep/2,               1,  x_k[0]*tstep/2]
        Phi_k[6,:] = np.r_[-x_k[5]*tstep/2,  x_k[4]*tstep/2,  x_k[3]*tstep/2, x_k[2]*tstep/2,  x_k[1]*tstep/2, -x_k[0]*tstep/2,               1]

        # Update error covariance matrix
        #P_k = (eye(7)-K_k*H_k)*P_k
        P_k = (np.eye(7) - K_k) @ P_k

        # Projection of state quaternions
        x_k[3:] += 0.5 * quat.q_mult(x_k[3:], np.r_[0, x_k[:3]]).flatten()
        x_k[3:] = vector.normalize( x_k[3:] )
        x_k[:3] = np.zeros(3)
        x_k[:3] += tstep * (-x_k[:3]+z_k[:3])

        qOut[ii,:] = x_k[3:]

        # Projection of error covariance matrix
        P_k = Phi_k @ P_k @ Phi_k.T + Q_k

    # Make the first position the reference position
    qOut = quat.q_mult(qOut, quat.q_inv(qOut[0]))

    return qOut
コード例 #5
0
def analytical(R_initialOrientation=np.eye(3),
               omega=np.zeros((5,3)),
               initialPosition=np.zeros(3),
               accMeasured=np.column_stack((np.zeros((5,2)), 9.81*np.ones(5))),
               rate=100):
    ''' Reconstruct position and orientation with an analytical solution,
    from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]
    vel : ndarray(N,3)
        Velocity in space [m/s]

    Example
    -------
     
    >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = constants.g
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0,0,g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)    
    
    q_initial = rotmat.convert(R_initialOrientation, to='quat')
    
    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    q_ref = quat.q_mult(q_initial, q0)
    
    # Calculate orientation q by "integrating" omega -----------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = np.r_[0, 0, g] 
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan*np.ones_like(accReSpace)
    pos = np.nan*np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:,ii] = cumtrapz(accReSpace[:,ii], dx=1./rate, initial=0)
        pos[:,ii] = cumtrapz(vel[:,ii],        dx=1./rate, initial=initialPosition[ii])

    return (q, pos, vel)
コード例 #6
0
def kalman(rate,
           acc,
           omega,
           mag,
           D=[0.4, 0.4, 0.4],
           tau=[0.5, 0.5, 0.5],
           Q_k=None,
           R_k=None):
    '''
    Calclulate the orientation from IMU magnetometer data.

    Parameters
    ----------
    rate : float
    	   sample rate [Hz]	
    acc : (N,3) ndarray
    	  linear acceleration [m/sec^2]
    omega : (N,3) ndarray
    	  angular velocity [rad/sec]
    mag : (N,3) ndarray
    	  magnetic field orientation
    D : (,3) ndarray
          noise variance, for x/y/z [rad^2/sec^2]
          parameter for tuning the filter; defaults from Yun et al.
          can also be entered as list
    tau : (,3) ndarray
          time constant for the process model, for x/y/z [sec]
          parameter for tuning the filter; defaults from Yun et al.
          can also be entered as list
    Q_k : None, or (7,7) ndarray
          covariance matrix of process noises
          parameter for tuning the filter
          If set to "None", the defaults from Yun et al. are taken!
    R_k : None, or (7,7) ndarray
          covariance matrix of measurement noises
          parameter for tuning the filter; defaults from Yun et al.
          If set to "None", the defaults from Yun et al. are taken!
          

    Returns
    -------
    qOut : (N,4) ndarray
    	   unit quaternion, describing the orientation relativ to the coordinate
           system spanned by the local magnetic field, and gravity

    Notes
    -----
    Based on "Design, Implementation, and Experimental Results of a Quaternion-
       Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman,
       E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006)

    '''

    numData = len(acc)

    # Set parameters for Kalman Filter
    tstep = 1. / rate

    # check input
    assert len(tau) == 3
    tau = np.array(tau)

    # Initializations
    x_k = np.zeros(7)  # state vector
    z_k = np.zeros(7)  # measurement vector
    z_k_pre = np.zeros(7)
    P_k = np.eye(7)  # error covariance matrix P_k

    Phi_k = np.eye(7)  # discrete state transition matrix Phi_k
    for ii in range(3):
        Phi_k[ii, ii] = np.exp(-tstep / tau[ii])

    H_k = np.eye(7)  # Identity matrix

    D = np.r_[0.4, 0.4, 0.4]  # [rad^2/sec^2]; from Yun, 2006

    if Q_k is None:
        # Set the default input, from Yun et al.
        Q_k = np.zeros((7, 7))  # process noise matrix Q_k
        for ii in range(3):
            Q_k[ii,
                ii] = D[ii] / (2 * tau[ii]) * (1 -
                                               np.exp(-2 * tstep / tau[ii]))
    else:
        # Check the shape of the input
        assert Q_k.shape == (7, 7)

    # Evaluate measurement noise covariance matrix R_k
    if R_k is None:
        # Set the default input, from Yun et al.
        r_angvel = 0.01
        # [rad**2/sec**2]; from Yun, 2006
        r_quats = 0.0001
        # from Yun, 2006

        r_ii = np.zeros(7)
        for ii in range(3):
            r_ii[ii] = r_angvel
        for ii in range(4):
            r_ii[ii + 3] = r_quats

        R_k = np.diag(r_ii)
    else:
        # Check the shape of the input
        assert R_k.shape == (7, 7)

    # Calculation of orientation for every time step
    qOut = np.zeros((numData, 4))

    for ii in range(numData):
        accelVec = acc[ii, :]
        magVec = mag[ii, :]
        angvelVec = omega[ii, :]
        z_k_pre = z_k.copy(
        )  # watch out: by default, Python passes the reference!!

        # Evaluate quaternion based on acceleration and magnetic field data
        accelVec_n = vector.normalize(accelVec)
        magVec_hor = magVec - accelVec_n * (accelVec_n @ magVec)
        magVec_n = vector.normalize(magVec_hor)
        basisVectors = np.column_stack(
            [magVec_n, np.cross(accelVec_n, magVec_n), accelVec_n])
        quatRef = quat.q_inv(rotmat.convert(basisVectors, to='quat')).ravel()

        # Calculate Kalman Gain
        # K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k)
        K_k = P_k @ np.linalg.inv(P_k + R_k)

        # Update measurement vector z_k
        z_k[:3] = angvelVec
        z_k[3:] = quatRef

        # Update state vector x_k
        x_k += np.array(K_k @ (z_k - z_k_pre)).ravel()

        # Evaluate discrete state transition matrix Phi_k
        Delta = np.zeros((7, 7))
        Delta[3, :] = np.r_[-x_k[4], -x_k[5], -x_k[6], 0, -x_k[0], -x_k[1],
                            -x_k[2]]
        Delta[4, :] = np.r_[x_k[3], -x_k[6], x_k[5], x_k[0], 0, x_k[2],
                            -x_k[1]]
        Delta[5, :] = np.r_[x_k[6], x_k[3], -x_k[4], x_k[1], -x_k[2], 0,
                            x_k[0]]
        Delta[6, :] = np.r_[-x_k[5], x_k[4], x_k[3], x_k[2], x_k[1], -x_k[0],
                            0]

        Delta *= tstep / 2
        Phi_k += Delta

        # Update error covariance matrix
        P_k = (np.eye(7) - K_k) @ P_k

        # Projection of state
        # 1) quaternions
        x_k[3:] += tstep * 0.5 * quat.q_mult(x_k[3:], np.r_[0,
                                                            x_k[:3]]).ravel()
        x_k[3:] = vector.normalize(x_k[3:])
        # 2) angular velocities
        x_k[:3] -= tstep * tau * x_k[:3]

        qOut[ii, :] = x_k[3:]

        # Projection of error covariance matrix
        P_k = Phi_k @ P_k @ Phi_k.T + Q_k

    # Make the first position the reference position
    qOut = quat.q_mult(qOut, quat.q_inv(qOut[0]))

    return qOut