コード例 #1
0
    hop = framesize // 2
    win_a = pra.hamming(framesize)
    win_s = pra.transform.compute_synthesis_window(win_a, hop)

    # algorithm parameters
    n_iter = args.n_iter

    # param ogive
    ogive_mu = 0.1
    ogive_update = "switching"
    ogive_iter = 4000

    # Geometry of the room and location of sources and microphones
    room_dim = np.array([10, 7.5, 3])
    mic_locs = semi_circle_layout(
        [4.1, 3.76, 1.2], np.pi, 0.20, n_mics, rot=np.pi / 2.0 * 0.99
    )

    target_locs = semi_circle_layout(
        [4.1, 3.755, 1.1], np.pi / 2, 2.0, n_sources_target, rot=0.743 * np.pi
    )
    # interferer_locs = grid_layout([3., 5.5], n_sources - n_sources_target, offset=[6.5, 1., 1.7])
    interferer_locs = random_layout(
        [3.0, 5.5, 1.5], n_sources - n_sources_target, offset=[6.5, 1.0, 0.5],
    )
    source_locs = np.concatenate((target_locs, interferer_locs), axis=1)

    # Prepare the signals
    wav_files = sampling(
        1,
        n_sources,
コード例 #2
0
ファイル: mbss_oneshot.py プロジェクト: onolab-tmu/blinky-iva
    sparse_reg = 0.0

    # pre-emphasis of blinky signals
    pre_emphasis = False

    # Geometry of the room and location of sources and microphones
    room_dim = np.array([10, 7.5, 3])

    mic_locs = np.vstack((
        pra.circular_2D_array([4.1, 3.76], n_mics, np.pi / 2, 0.02),
        1.2 * np.ones((1, n_mics)),
    ))

    target_locs = semi_circle_layout([4.1, 3.755, 1.1],
                                     np.pi / 2,
                                     2.0,
                                     n_sources_target,
                                     rot=0.743 * np.pi)
    # interferer_locs = grid_layout([3., 5.5], n_sources - n_sources_target, offset=[6.5, 1., 1.7])
    interferer_locs = random_layout([3.0, 5.5, 1.5],
                                    n_sources - n_sources_target,
                                    offset=[6.5, 1.0, 0.5],
                                    seed=1)
    source_locs = np.concatenate((target_locs, interferer_locs), axis=1)

    # Prepare the signals
    wav_files = sampling(1,
                         n_sources,
                         f"{samples_dir}/metadata.json",
                         gender_balanced=True,
                         seed=8)[0]
コード例 #3
0
    def createroom(mic_p, mic_d, sour_p, sour_d, callback_mix, roomdim,
                   absorption, max_order, n_mics, angle):
        np.random.seed(10)
        # STFT parameters
        framesize = 4096
        win_a = pra.hann(framesize)
        win_s = pra.transform.compute_synthesis_window(win_a, framesize // 2)
        # algorithm parameters
        # param ogive
        ogive_mu = 0.1
        ogive_update = "switching"
        ogive_iter = 2000
        SIR = 10  # dB
        SNR = (
            60
        )  # dB, this is the SNR with respect to a single target source and microphone self-noise

        ########separation params#############
        algo = algo_choices[0]
        no_cb = True
        save = True
        n_iter = 60
        dist = "gauss"  #guass or laplace
        ########paramas set##################
        fs = 44100
        n_sources = 2
        n_mics = n_mics
        n_sources_target = 2
        assert n_sources_target <= n_mics, "More sources than microphones is not supported"

        # set the source powers, the first one is half
        source_std = np.ones(n_sources_target)
        # room size
        room_dim = roomdim
        # micro position
        rot = angle
        offset = np.pi - rot / 2
        mic_locs = semi_circle_layout(mic_p, rot, mic_d, n_mics,
                                      rot=offset)  ###micro2

        # target position
        target_locs = np.transpose([[7, 10, 6], [9, 16, 6]])
        #interference position
        interferer_locs = random_layout([14, 0, 6],
                                        n_sources - n_sources_target,
                                        offset=[5, 20, 3],
                                        seed=1)
        source_locs = target_locs
        # audio loaded
        wav_files = [amBird, saBird]
        signals = wav_read_center(wav_files, seed=123)

        #create room
        room = pra.ShoeBox(room_dim,
                           fs=44100,
                           absorption=absorption,
                           max_order=max_order,
                           air_absorption=True,
                           humidity=50)

        # add source
        for sig, loc in zip(signals, source_locs.T):
            room.add_source(loc, signal=sig)

        # add micro
        room.add_microphone_array(pra.MicrophoneArray(mic_locs, fs=room.fs))

        callback_mix_kwargs = {
            "snr": SNR,
            "sir": SIR,
            "n_src": n_sources,
            "n_tgt": n_sources_target,
            "src_std": source_std,
            "ref_mic": 0,
        }

        # Run the simulation
        separate_recordings = room.simulate(
            callback_mix=callback_mix,
            callback_mix_kwargs=callback_mix_kwargs,
            return_premix=True,
        )
        mics_signals = room.mic_array.signals
        print("Simulation done.")

        # rt60 = room.measure_rt60()
        # print(rt60)

        # Monitor Convergence
        ref = np.moveaxis(separate_recordings, 1, 2)
        if ref.shape[0] < n_mics:
            ref = np.concatenate(
                (ref,
                 np.random.randn(n_mics - ref.shape[0], ref.shape[1],
                                 ref.shape[2])),
                axis=0,
            )

        SDR, SIR, cost_func = [], [], []
        convergence_callback = None

        # START BSS

        # shape: (n_frames, n_freq, n_mics)
        X_all = pra.transform.analysis(mics_signals.T,
                                       framesize,
                                       framesize // 2,
                                       win=win_a).astype(np.complex128)
        X_mics = X_all[:, :, :n_mics]

        tic = time.perf_counter()

        # Run BSS
        if algo == "auxiva":
            # Run AuxIVA
            Y = overiva(
                X_mics,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                callback=convergence_callback,
            )
        elif algo == "auxiva_pca":
            # Run AuxIVA
            Y = auxiva_pca(
                X_mics,
                n_src=n_sources_target,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                callback=convergence_callback,
            )
        elif algo == "overiva":
            # Run AuxIVA
            Y = overiva(
                X_mics,
                n_src=n_sources_target,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        elif algo == "ilrma":
            # Run AuxIVA
            Y = pra.bss.ilrma(
                X_mics,
                n_iter=n_iter,
                n_components=2,
                proj_back=True,
                callback=convergence_callback,
            )
        elif algo == "ogive":
            # Run OGIVE
            Y = ogive(
                X_mics,
                n_iter=ogive_iter,
                step_size=ogive_mu,
                update=ogive_update,
                proj_back=True,
                model=dist,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        elif algo == "ogive_matlab":
            # Run OGIVE
            Y = ogive_matlab_wrapper(
                X_mics,
                n_iter=ogive_iter,
                step_size=ogive_mu,
                update=ogive_update,
                proj_back=True,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        else:
            raise ValueError("No such algorithm {}".format(algo))

        toc = time.perf_counter()

        # Run iSTFT
        if Y.shape[2] == 1:
            y = pra.transform.synthesis(Y[:, :, 0],
                                        framesize,
                                        framesize // 2,
                                        win=win_s)[:, None]
            y = y.astype(np.float64)
        else:
            y = pra.transform.synthesis(Y,
                                        framesize,
                                        framesize // 2,
                                        win=win_s).astype(np.float64)

        # If some of the output are uniformly zero, just add a bit of noise to compare
        for k in range(y.shape[1]):
            if np.sum(np.abs(y[:, k])) < 1e-10:
                y[:, k] = np.random.randn(y.shape[0]) * 1e-10

        # For conventional methods of BSS, reorder the signals by decreasing power
        if algo != "blinkiva":
            new_ord = np.argsort(np.std(y, axis=0))[::-1]
            y = y[:, new_ord]

        # Compare SIR
        m = np.minimum(y.shape[0] - framesize // 2, ref.shape[1])
        sdr, sir, sar, perm = bss_eval_sources(
            ref[:n_sources_target, :m, 0],
            y[framesize // 2:m + framesize // 2, :n_sources_target].T,
        )

        # reorder the vector of reconstructed signals
        y_hat = y[:, perm]
        print("SDR:", sdr)
        print("SIR:", sir)

        ####save mix and separation #######
        if save:
            from scipy.io import wavfile
            wavfile.write(
                "birdmix.wav",
                room.fs,
                (pra.normalize(mics_signals, bits=16).astype(np.int16).T)[:,
                                                                          0],
            )
            for i, sig in enumerate(y_hat.T):
                wavfile.write(
                    "birdsep{}.wav".format(i + 1),
                    room.fs,
                    pra.normalize(sig, bits=16).astype(np.int16).T,
                )
コード例 #4
0
def plot_room_setup(filename, n_mics, n_targets, parameters):
    '''
    Plot the room scenario in 2D
    '''

    n_interferers = parameters['n_interferers']
    n_blinkies = parameters['n_blinkies']
    ref_mic = parameters['ref_mic']
    room_dim = np.array(parameters['room_dim'])

    # total number of sources
    n_sources = n_interferers + n_targets

    # Geometry of the room and location of sources and microphones
    interferer_locs = random_layout([3., 5.5, 1.5],
                                    n_interferers,
                                    offset=[6.5, 1., 0.5],
                                    seed=1)

    target_locs = semi_circle_layout(
        [4.1, 3.755, 1.2],
        np.pi / 1.5,
        2.,  # 120 degrees arc, 2 meters away
        n_targets,
        rot=0.743 * np.pi,
    )

    source_locs = np.concatenate((target_locs, interferer_locs), axis=1)

    if parameters['blinky_geometry'] == 'gm':
        ''' Normally distributed in the vicinity of each source '''
        blinky_locs = gm_layout(
            n_blinkies,
            target_locs - np.c_[[0., 0., 0.5]],
            std=[0.4, 0.4, 0.05],
            seed=987,
        )

    elif parameters['blinky_geometry'] == 'grid':
        ''' Placed on a regular grid, with a little bit of noise added '''
        blinky_locs = grid_layout([3., 5.5],
                                  n_blinkies,
                                  offset=[1., 1., 0.7],
                                  seed=987)

    else:
        ''' default is semi-circular '''
        blinky_locs = semi_circle_layout(
            [4.1, 3.755, 1.1],
            np.pi,
            3.5,
            n_blinkies,
            rot=0.743 * np.pi - np.pi / 4,
            seed=987,
        )

    mic_locs = np.vstack((
        pra.circular_2D_array([4.1, 3.76], n_mics, np.pi / 2, 0.02),
        1.2 * np.ones((1, n_mics)),
    ))
    all_locs = np.concatenate((mic_locs, blinky_locs), axis=1)

    # Create the room itself
    room = pra.ShoeBox(room_dim[:2])

    for loc in source_locs.T:
        room.add_source(loc[:2])

    # Place the microphone array
    room.add_microphone_array(pra.MicrophoneArray(all_locs[:2, :], fs=room.fs))

    room.plot(img_order=0)
    plt.xlim([-0.1, room_dim[0] + 0.1])
    plt.ylim([-0.1, room_dim[1] + 0.1])

    plt.savefig(filename)
コード例 #5
0
    def createroom(amBird, saBird, noises, mic_p, mic_d, sour_p, sour_d, callback_mix, roomdim, absorption, max_order, n_mics, angle):
        ###########IVA params set################
        np.random.seed(10)
        # STFT parameters
        framesize = 4096
        win_a = pra.hann(framesize)
        win_s = pra.transform.compute_synthesis_window(
            win_a, framesize // 2)
        # algorithm parameters
        # param ogive
        ogive_mu = 0.1
        ogive_update = "switching"
        ogive_iter = 2000
      
        # dB, this is the SNR with respect to a single target source and microphone self-noise
     
    ########separation params##################
        algo = algo_choices[0]
        no_cb = True
        save = True
        n_iter = 60  
        dist = "gauss"  # guass or laplace
    ########paramas set##################
        fs = 44100
        snr=60
        sinr=10
        n_sources = 2+3  
        n_mics = n_mics 
        n_sources_target = 2  
        assert n_sources_target <= n_mics, "More sources than microphones is not supported"

    # set the source powers, the first one is half
        source_std = np.ones(n_sources_target)
    # position
        # room size
        room_dim = roomdim
        # micro position 
        rot = angle
        offset = np.pi-rot/2
        mic_locs = semi_circle_layout(
            mic_p, rot, mic_d, n_mics, rot=offset)  # micro2

        # target position 
        target_locs = np.transpose([[7, 10, 6], [9, 16, 6]])
        
        #interfere position 
        interferer_locs = random_layout([16, 2, 6], 3, offset=[5, 18, 3], seed=1)
        source_locs = np.concatenate((target_locs, interferer_locs), axis=1)
        # source_locs = target_locs
        # audio input 
        wav_files = [amBird, saBird, noises[0],noises[1],noises[2]]
        signals = wav_read_center(wav_files, seed=123)

        # create room 
        room = pra.ShoeBox(room_dim, fs=44100, absorption=absorption,
                           max_order=max_order, air_absorption=True, humidity=50)

        # add source
        for sig, loc in zip(signals, source_locs.T):
            room.add_source(loc, signal=sig)

        # add micro
        room.add_microphone_array(
            pra.MicrophoneArray(mic_locs, fs=room.fs))

        #     #   draw
        # x = mic_locs[:2][0]
        # y = mic_locs[:2][1]
        # import matplotlib.pyplot as plt
        # plt.scatter(x,y)
        # plt.axis('equal')
        # plt.xlim([0,20])
        # plt.ylim([0,20])
        # x1 = source_locs[:2][0]
        # y1 = source_locs[:2][1]
        # plt.scatter(x1,y1)
        # plt.xlim([0,20])
        # plt.ylim([0,20])
        # plt.axis('equal')
        # x1 = interferer_locs[:2][0]
        # y1 = interferer_locs[:2][1]
        # plt.scatter(x1,y1)
        # plt.xlim([0,20])
        # plt.ylim([0,20])
        # plt.axis('equal')
        # plt.show()
        # callback_mix_kwargs = {
        #     "snr": SNR,
        #     "sir": SIR,
        #     "n_src": n_sources,
        #     "n_tgt": n_sources_target,
        #     "src_std": source_std,
        #     "ref_mic": 0,
        # }


        # power set  
        premix = room.simulate(return_premix=True)
        n_samples = premix.shape[2]
        # Normalize the signals so that they all have unit variance at the reference microphone
        ref_mic=0 
        p_mic_ref = np.std(premix[:, ref_mic, :], axis=1)
        premix /= p_mic_ref[:, None, None]  
        sources_var = np.ones(n_sources_target) # 
        # scale to pre-defined variance
        premix[:n_sources_target, :, :] *= np.sqrt(sources_var[:, None, None])

        # compute noise variance
        sigma_n = np.sqrt(10 ** (-snr / 10) * np.sum(sources_var))

        # now compute the power of interference signal needed to achieve desired SINR
        sigma_i = np.sqrt(
            np.maximum(0, 10 ** (-sinr / 10) * np.sum(sources_var) - sigma_n ** 2)
            / (n_sources-n_sources_target)
        )
        premix[n_sources_target:, :, :] *= sigma_i
 
       
        background = (
            np.sum(premix[n_sources_target:, :, :], axis=0)
        )
         
        # Mix down the recorded signals
        mix = np.sum(premix, axis=0)
        mics_signals = room.mic_array.signals
       
        print("Simulation done.")
        
        # Monitor Convergence
        ref = np.zeros(
        (n_sources_target+1, premix.shape[2], premix.shape[1]), dtype=premix.dtype)
        ref[:n_sources_target, :, :] = premix[:n_sources_target, :, :].swapaxes(1, 2)
        ref[n_sources_target, :, :] = background.T
        convergence_callback = None

        # START BSS

        X_all = pra.transform.analysis(
            mix.T, framesize, framesize // 2, win=win_a
        ).astype(np.complex128)
        X_mics = X_all[:, :, :n_mics]


        # Run BSS
        if algo == "auxiva":
            # Run AuxIVA
            Y = overiva(
                X_mics,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                callback=convergence_callback,
            )
        elif algo == "auxiva_pca":
            # Run AuxIVA
            Y = auxiva_pca(
                X_mics,
                n_src=n_sources_target,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                callback=convergence_callback,
            )
        elif algo == "overiva":
            # Run AuxIVA
            Y = overiva(
                X_mics,
                n_src=n_sources_target,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        elif algo == "ilrma":
            # Run AuxIVA
            Y = pra.bss.ilrma(
                X_mics,
                n_iter=n_iter,
                n_components=2,
                proj_back=True,
                callback=convergence_callback,
            )
        elif algo == "ogive":
            # Run OGIVE
            Y = ogive(
                X_mics,
                n_iter=ogive_iter,
                step_size=ogive_mu,
                update=ogive_update,
                proj_back=True,
                model=dist,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        elif algo == "ogive_matlab":
            # Run OGIVE
            Y = ogive_matlab_wrapper(
                X_mics,
                n_iter=ogive_iter,
                step_size=ogive_mu,
                update=ogive_update,
                proj_back=True,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        else:
            raise ValueError("No such algorithm {}".format(algo))


        # Run iSTFT
        if Y.shape[2] == 1:
            y = pra.transform.synthesis(Y[:, :, 0], framesize, framesize // 2, win=win_s)[
                :, None
            ]
            y = y.astype(np.float64)
        else:
            y = pra.transform.synthesis(Y, framesize, framesize // 2, win=win_s).astype(
                np.float64
            )

        # If some of the output are uniformly zero, just add a bit of noise to compare
        for k in range(y.shape[1]):
            if np.sum(np.abs(y[:, k])) < 1e-10:
                y[:, k] = np.random.randn(y.shape[0]) * 1e-10

        # For conventional methods of BSS, reorder the signals by decreasing power
        if algo != "blinkiva":
            new_ord = np.argsort(np.std(y, axis=0))[::-1]
            y = y[:, new_ord]

        # Compare SIR
       
        m = np.minimum(y.shape[0] - framesize // 2, ref.shape[1])
        sdr, sir, sar, perm = bss_eval_sources(
            ref[:n_sources_target, :m, 0],
            y[framesize // 2: m + framesize // 2, :n_sources_target].T,
        )

        # reorder the vector of reconstructed signals
        y_hat = y[:, perm]
        SDRList.append(sdr)
        SIRList.append(sir)
        print("SDR:", sdr)
        print("SIR:", sir)

####save mix and separation #######
        if save:
            from scipy.io import wavfile
            wavfile.write(
                "birdmix.wav",
                room.fs,
                (pra.normalize(mics_signals, bits=16).astype(
                    np.int16).T)[:, 0],
            )
            for i, sig in enumerate(y_hat.T):
                wavfile.write(
                    "birdsep{}.wav".format(i + 1),
                    room.fs,
                    pra.normalize(sig, bits=16).astype(np.int16).T,
                )
コード例 #6
0
ファイル: mbss_sim.py プロジェクト: cohendrake/blinky-iva
def one_loop(args):

    import numpy
    np = numpy

    import pyroomacoustics
    pra = pyroomacoustics

    import sys
    sys.path.append(parameters['base_dir'])

    from routines import semi_circle_layout, random_layout, gm_layout, grid_layout
    from blinkiva import blinkiva
    from blinkiva_gauss import blinkiva_gauss
    from generate_samples import wav_read_center

    n_targets, n_mics, rt60, sinr, wav_files, seed = args

    # this is the underdetermined case. We don't do that.
    if n_mics < n_targets:
        return []

    # set MKL to only use one thread if present
    try:
        import mkl
        mkl.set_num_threads(1)
    except ImportError:
        pass

    # set the RNG seed
    rng_state = np.random.get_state()
    np.random.seed(seed)

    # STFT parameters
    framesize = parameters['stft_params']['framesize']
    win_a = pra.hann(framesize)
    win_s = pra.transform.compute_synthesis_window(win_a, framesize // 2)

    # Generate the audio signals

    # get the simulation parameters from the json file
    # Simulation parameters
    n_repeat = parameters['n_repeat']
    fs = parameters['fs']
    snr = parameters['snr']

    n_interferers = parameters['n_interferers']
    n_blinkies = parameters['n_blinkies']
    ref_mic = parameters['ref_mic']
    room_dim = np.array(parameters['room_dim'])

    sources_var = np.ones(n_targets)
    sources_var[0] = parameters['weak_source_var']

    # total number of sources
    n_sources = n_interferers + n_targets

    # Geometry of the room and location of sources and microphones
    interferer_locs = random_layout([3., 5.5, 1.5], n_interferers, offset=[6.5, 1., 0.5], seed=1)

    target_locs = semi_circle_layout(
            [4.1, 3.755, 1.2],
            np.pi / 1.5, 2.,  # 120 degrees arc, 2 meters away
            n_targets,
            rot=0.743 * np.pi,
            )

    source_locs = np.concatenate((target_locs, interferer_locs), axis=1)

    if parameters['blinky_geometry'] == 'gm':
        ''' Normally distributed in the vicinity of each source '''
        blinky_locs = gm_layout(
                n_blinkies, target_locs - np.c_[[0., 0., 0.5]],
                std=[0.4, 0.4, 0.05], seed=987,
                )

    elif parameters['blinky_geometry'] == 'grid':
        ''' Placed on a regular grid, with a little bit of noise added '''
        blinky_locs = grid_layout([3.,5.5], n_blinkies, offset=[1., 1., 0.7], seed=987,)

    else:
        ''' default is semi-circular '''
        blinky_locs = semi_circle_layout(
                [4.1, 3.755, 1.1],
                np.pi, 3.5,
                n_blinkies,
                rot=0.743 * np.pi - np.pi / 4,
                seed=987,
                )

    mic_locs = np.vstack((
        pra.circular_2D_array([4.1, 3.76], n_mics, np.pi / 2, 0.02),
        1.2 * np.ones((1, n_mics)),
        ))
    all_locs = np.concatenate((mic_locs, blinky_locs), axis=1)


    signals = wav_read_center(wav_files, seed=123)

    # Create the room itself
    room = pra.ShoeBox(room_dim,
            fs=fs,
            absorption=parameters['rt60_list'][rt60]['absorption'],
            max_order=parameters['rt60_list'][rt60]['max_order'],
            )

    # Place all the sound sources
    for sig, loc in zip(signals[-n_sources:,:], source_locs.T,):
        room.add_source(loc, signal=sig)

    assert len(room.sources) == n_sources, 'Number of signals ({}) doesn''t match number of sources ({})'.format(signals.shape[0], n_sources)

    # Place the microphone array
    room.add_microphone_array(
            pra.MicrophoneArray(all_locs, fs=room.fs)
            )

    # compute RIRs
    room.compute_rir()

    # Run the simulation
    premix = room.simulate(return_premix=True)

    # Normalize the signals so that they all have unit
    # variance at the reference microphone
    p_mic_ref = np.std(premix[:,ref_mic,:], axis=1)
    premix /= p_mic_ref[:,None,None]

    # scale to pre-defined variance
    premix[:n_targets,:,:] *= np.sqrt(sources_var[:,None,None])

    # compute noise variance
    sigma_n = np.sqrt(10 ** (- snr / 10) * np.sum(sources_var))

    # now compute the power of interference signal needed to achieve desired SINR
    sigma_i = np.sqrt(
            np.maximum(0, 10 ** (- sinr / 10) * np.sum(sources_var) - sigma_n ** 2) / n_interferers
            )
    premix[n_targets:,:,:] *= sigma_i

    # Mix down the recorded signals
    mix = np.sum(premix, axis=0) + sigma_n * np.random.randn(*premix.shape[1:])

    ref = np.moveaxis(premix, 1, 2)
    
    # START BSS
    ###########

    # pre-emphasis on blinky signals
    if parameters['use_pre_emphasis']:
        mix[n_mics:,:-1] = np.diff(mix[n_mics:,:], axis=1)
        mix[n_mics:,-1] = 0.

    # shape: (n_frames, n_freq, n_mics)
    X_all = pra.transform.analysis(
            mix.T,
            framesize, framesize // 2,
            win=win_a,
            ) 
    X_mics =  X_all[:,:,:n_mics]
    U_blinky = np.sum(np.abs(X_all[:,:,n_mics:]) ** 2, axis=1)  # shape: (n_frames, n_blinkies)

    # convergence monitoring callback
    def convergence_callback(Y, n_targets, SDR, SIR, ref, framesize, win_s, algo_name):
        from mir_eval.separation import bss_eval_sources
        y = pra.transform.synthesis(Y, framesize, framesize // 2, win=win_s,)

        if not algo_name.startswith('blinkiva'):
            new_ord = np.argsort(np.std(y, axis=0))[::-1]
            y = y[:,new_ord]

        m = np.minimum(y.shape[0]-framesize//2, ref.shape[1])
        sdr, sir, sar, perm = bss_eval_sources(
                ref[:n_targets,:m,0],
                y[framesize//2:m+framesize//2,:n_targets].T,
                )
        SDR.append(sdr.tolist())
        SIR.append(sir.tolist())

    # store results in a list, one entry per algorithm
    results = []

    for name, kwargs in parameters['algorithm_kwargs'].items():

        results.append({ 
                'algorithm' : name,
                'n_targets' : n_targets,
                'n_mics' : n_mics,
                'rt60' : rt60,
                'sinr' : sinr,
                'seed' : seed,
                'sdr' : [], 'sir' : [],  # to store the result
                })

        if parameters['monitor_convergence']:
            cb = lambda Y :  convergence_callback(
                    Y, n_targets,
                    results[-1]['sdr'], results[-1]['sir'],
                    ref, framesize, win_s, name,
                    )
        else:
            cb = None
            # In that case, we still want to capture the initial values of SDR/SIR
            convergence_callback(
                    X_mics, n_targets,
                    results[-1]['sdr'], results[-1]['sir'],
                    ref, framesize, win_s, name,
                    )

        if name == 'auxiva':
            # Run AuxIVA
            Y = pra.bss.auxiva(
                    X_mics,
                    callback=cb,
                    **kwargs,
                    )

        elif name == 'blinkiva':
            # Run BlinkIVA
            Y = blinkiva(
                    X_mics, U_blinky, n_src=n_targets,
                    callback=cb,
                    **kwargs,
                    )

        elif name == 'blinkiva-gauss':
            # Run BlinkIVA
            Y = blinkiva_gauss(
                    X_mics, U_blinky, n_src=n_targets,
                    callback=cb,
                    **kwargs,
                    )

        else:
            continue

        # The last evaluation
        convergence_callback(
                Y, n_targets,
                results[-1]['sdr'], results[-1]['sir'],
                ref, framesize, win_s, name,
                )

    # restore RNG former state
    np.random.set_state(rng_state)

    return results
コード例 #7
0
    def fan_createroom(Bird1,Bird2,Bird3,callback_mix):
        #params settings
        np.random.seed(10)
        # STFT parameters
        framesize = 4096
        win_a = pra.hann(framesize)
        win_s = pra.transform.compute_synthesis_window(
            win_a, framesize // 2)
        # algorithm parameters
        # param ogive
        ogive_mu = 0.1
        ogive_update = "switching"
        ogive_iter = 2000
        SIR = 10  # dB
        SNR = (60)
        roomdim = np.array([20, 20, 10]) 
        max_order = 17  
        absorption = 0.9    
        mic_p = [13, 10, 3.5]  
        mic_d = 0.025 
        sour_p = [13,10,6]
        sour_d = 5 
        n_mics = 4  
        n_sources=3
        mic_rot = np.pi
        bird_rot = np.pi*2/3
        algo = algo_choices[0]
        no_cb = True
        save = True
        n_iter = 60  
        dist = "gauss"  # laplace
        fs = 44100
        n_sources_target = 3
        assert n_sources_target <= n_mics, "More sources than microphones is not supported"
    # set the source powers, the first one is half
        source_std = np.ones(n_sources_target)
 
        #room size
        room_dim = roomdim

        # micro phone position 
        mic_locs = semi_circle_layout(mic_p, mic_rot, mic_d, n_mics, np.pi-mic_rot/2)


        # target sources position 
        source_locs = semi_circle_layout(sour_p,
         bird_rot , sour_d, 3, np.pi-bird_rot/2)

        # audio loaded 
        wav_files = [Bird1,Bird2,Bird3]
     
        signals = wav_read_center(wav_files, seed=123)

        # createroom 
        room = pra.ShoeBox(room_dim, fs=44100, absorption=absorption,
                            max_order=max_order, air_absorption=True, humidity=50)

        # add source
        for sig, loc in zip(signals, source_locs.T):
            room.add_source(loc, signal=sig)

        # add micro
        room.add_microphone_array(
            pra.MicrophoneArray(mic_locs, fs=room.fs))

        callback_mix_kwargs = {
            "snr": SNR,
            "sir": SIR,
            "n_src": n_sources,
            "n_tgt": n_sources_target,
            "src_std": source_std,
            "ref_mic": 0,
        }
        # draw
        # x = mic_locs[:2][0]
        # y = mic_locs[:2][1]
        # import matplotlib.pyplot as plt
        # plt.scatter(x,y)
        # plt.axis('equal')
        # plt.xlim([0,20])
        # plt.ylim([0,20])
        # x1 = source_locs[:2][0]
        # y1 = source_locs[:2][1]
        # plt.scatter(x1,y1)
        # plt.xlim([0,20])
        # plt.ylim([0,20])
        # plt.axis('equal')
        # plt.show()

        # Run the simulation
        separate_recordings = room.simulate(
            callback_mix=callback_mix,
            callback_mix_kwargs=callback_mix_kwargs,
            return_premix=True,
        )
        mics_signals = room.mic_array.signals
        print("fan Simulation done.")



        # Monitor Convergence
        ref = np.moveaxis(separate_recordings, 1, 2)
        if ref.shape[0] < n_mics:
            ref = np.concatenate(
                (ref, np.random.randn(n_mics -
                                        ref.shape[0], ref.shape[1], ref.shape[2])),
                axis=0,
            )

        # SDR, SIR, cost_func = [], [], []
        convergence_callback = None

        # START BSS

        # shape: (n_frames, n_freq, n_mics)
        X_all = pra.transform.analysis(
            mics_signals.T, framesize, framesize // 2, win=win_a
        ).astype(np.complex128)
        X_mics = X_all[:, :, :n_mics]


        # Run BSS
        if algo == "auxiva":
            # Run AuxIVA
            Y = overiva(
                X_mics,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                callback=convergence_callback,
            )
        elif algo == "auxiva_pca":
            # Run AuxIVA
            Y = auxiva_pca(
                X_mics,
                n_src=n_sources_target,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                callback=convergence_callback,
            )
        elif algo == "overiva":
            # Run AuxIVA
            Y = overiva(
                X_mics,
                n_src=n_sources_target,
                n_iter=n_iter,
                proj_back=True,
                model=dist,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
           
        elif algo == "ilrma":
            # Run AuxIVA
            Y = pra.bss.ilrma(
                X_mics,
                n_iter=n_iter,
                n_components=2,
                proj_back=True,
                callback=convergence_callback,
            )
        elif algo == "ogive":
            # Run OGIVE
            Y = ogive(
                X_mics,
                n_iter=ogive_iter,
                step_size=ogive_mu,
                update=ogive_update,
                proj_back=True,
                model=dist,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        elif algo == "ogive_matlab":
            # Run OGIVE
            Y = ogive_matlab_wrapper(
                X_mics,
                n_iter=ogive_iter,
                step_size=ogive_mu,
                update=ogive_update,
                proj_back=True,
                init_eig=(init == init_choices[1]),
                callback=convergence_callback,
            )
        else:
            raise ValueError("No such algorithm {}".format(algo))

  

    

        # Run iSTFT
        if Y.shape[2] == 1:
            y = pra.transform.synthesis(Y[:, :, 0], framesize, framesize // 2, win=win_s)[
                :, None
            ]
            y = y.astype(np.float64)
        else:
            y = pra.transform.synthesis(Y, framesize, framesize // 2, win=win_s).astype(
                np.float64
            )

        # If some of the output are uniformly zero, just add a bit of noise to compare
        for k in range(y.shape[1]):
            if np.sum(np.abs(y[:, k])) < 1e-10:
                y[:, k] = np.random.randn(y.shape[0]) * 1e-10

        # For conventional methods of BSS, reorder the signals by decreasing power
        if algo != "blinkiva":
            new_ord = np.argsort(np.std(y, axis=0))[::-1]
            y = y[:, new_ord]

        # Compare SIR
        m = np.minimum(y.shape[0] - framesize // 2, ref.shape[1])
        sdr, sir, sar, perm = bss_eval_sources(
            ref[:n_sources_target, :m, 0],
            y[framesize // 2: m + framesize // 2, :n_sources_target].T,
        )

        y_hat = y[:, perm]
        #return 
        mixdata = pra.normalize(mics_signals, bits=16).astype(np.int16).T
        separationdata = []
        for sig in y_hat.T:
            separationdata.append(pra.normalize(sig, bits=16).astype(np.int16).T)
        print("sdr",sdr)        
        return sdr,sir,mixdata,separationdata  #wavefile(mixdata) wavefile(separationdata[0]) wavefile(separationdata[1])