return classification if __name__ == "__main__": if len(sys.argv) < 3: print(sys.argv[0] + " <lexicon_filepath> " + "<narrative_filepath>") quit() lexicon_filepath = sys.argv[1] narrative_filepath = sys.argv[2] # Lexicon is a dict indexed by words of the english dictionary. # Each value is a list of tuples [(nrc_emotion, association)] lexicon = parse_nrc_lexicon(lexicon_filepath) # Narrative is a dict indexed by sentence id. # Each value is a tuple (sentence, rpg_emotion) narrative = rpg_ec.parse_narrative_data(narrative_filepath) # Classify a narrative according to rpg_emotions: classification = classify_narrative(narrative, lexicon, 20) # Calculate confusion matrix confusion_matrix = rpg_ec.rpg_create_confusion_matrix( narrative, classification) rpg_ec.rpg_print_confusion_matrix(confusion_matrix) print(rpg_ec.calculate_accuracy(confusion_matrix)) rpg_ec.rpg_print_classification(classification, "classification.txt")
atualTrans = 3 else: linhas[linha - 1]['emotion'] = 'agitated' linhas[linha - 1]['prob'] = prob atual = 'agitated' atualTrans = 4 cont = cont + 1 inicio = inicio + 1 for x in range(0, len(linhas)): str1 = ' '.join(linhas[x]['arranjo']) classification[x + 1] = (str1, str(linhas[x]['emotion'])) narrative = rpg_ec.parse_narrative_data('datasets/ep' + str(episodio) + '.txt') confusion_matrix = rpg_ec.rpg_create_confusion_matrix( narrative, classification) resultado = rpg_ec.calculate_accuracy(confusion_matrix) ## resultEp1Accura.append(resultado) ## limiarArray.append(limiar) ## janelaArray.append(janela) DifTransicao = 0 def calculateDifference(transition, episodio, TransEps): DifTrans = 0 if transition >= TransEps[episodio - 1]: DifTrans = transition - TransEps[episodio - 1]