def __init__(self, **kwargs): Net.__init__(self, **kwargs) c = self.c sg_n_out = c.n_object * c.symbol_size * 3 n_in = c.n_in * c.n_object self._sg_net = MLP(n_in + sg_n_out, sg_n_out, c.hidden_dims)
def __init__(self, **kwargs): Net.__init__(self, **kwargs) c = self.c n_entities = c.n_object * (c.n_object + 1) input_size = c.im_enc_size * c.n_object symbol_size = c.symbol_size * n_entities * 3 self._state_encoder = ImageEncoder(IMAGE_SIZE, c.im_enc_size) self._subgoal = MLP(input_size + symbol_size, symbol_size, c.hidden_dims)
def __init__(self, **kwargs): Net.__init__(self, **kwargs) c = self.c input_size = c.n_in * c.n_object symbol_size = c.symbol_size * c.n_object * 3 self._subgoal = MLP(input_size + symbol_size, symbol_size, c.hidden_dims) self._satisfied = MLP(c.n_in + c.symbol_size * 2, 2, c.hidden_dims) self._dependency = MLP(c.n_in * 2 + c.symbol_size * 4, 2, c.hidden_dims)
def __init__(self, **kwargs): Net.__init__(self, **kwargs) c = self.c input_size = c.n_in * c.n_object symbol_size = c.symbol_size * c.n_object * 3 self._focus = MLP(input_size + symbol_size, symbol_size, c.hidden_dims) self._preimage = MLP(input_size + symbol_size, symbol_size, c.hidden_dims) self._reachable_encoder = MLP(c.n_in + c.symbol_size * 3, 64, layer_dims=(128, ), output_activation=nn.ReLU) self._reachable = MLP(64, 2, [64])
def __init__(self, **kwargs): Net.__init__(self, **kwargs) c = self.c input_size = c.n_in * c.n_object symbol_size = c.symbol_size * c.n_object * 3 # self._policy = MLP(input_size + symbol_size, c.n_action, c.policy_dims) self._preimage = MLP(input_size + symbol_size, symbol_size, c.hidden_dims) self._reachable = MLP(input_size + symbol_size, 2, c.hidden_dims) self._satisfied = MLP(c.n_in + c.symbol_size * 2, 2, c.hidden_dims) self._dependency = MLP(c.n_in * 2 + c.symbol_size * 4, 2, c.hidden_dims)
def __init__(self, **kwargs): Net.__init__(self, **kwargs) c = self.c n_entities = c.n_object * (c.n_object + 1) input_size = c.im_enc_size * c.n_object symbol_size = c.symbol_size * n_entities * 3 self._state_encoder = ImageEncoder(IMAGE_SIZE, c.im_enc_size) self._focus = MLP(input_size + symbol_size, symbol_size, c.hidden_dims) self._preimage = MLP(input_size + symbol_size, symbol_size, c.hidden_dims) self._reachable = ReachableNet(c.im_enc_size, c.symbol_size) src, tgt = torch.meshgrid(torch.arange(c.n_object), torch.arange(c.n_object)) self.register_buffer('edge_src', src.contiguous().view(-1)) self.register_buffer('edge_tgt', tgt.contiguous().view(-1)) self._object_feat_pad = nn.ConstantPad1d((0, c.im_enc_size), 0)