コード例 #1
0
def test_unsignednumpyint_to_rint():
    values = (1, 2, 3)
    a8 = numpy.array(values, dtype='uint8')
    v = rpyn.unsignednumpyint_to_rint(a8)
    assert values == tuple(v)

    a64 = numpy.array(values, dtype='uint64')
    with pytest.raises(ValueError):
        rpyn.unsignednumpyint_to_rint(a64)
コード例 #2
0
def test_unsignednumpyint_to_rint(dtype):
    values = (1, 2, 3)
    a = numpy.array(values, dtype=dtype)
    v = rpyn.unsignednumpyint_to_rint(a)
    assert values == tuple(v)
コード例 #3
0
def test_unsignednumpyint_to_rint_error(dtype):
    values = (1, 2, 3)
    a = numpy.array(values, dtype=dtype)
    with pytest.raises(ValueError):
        rpyn.unsignednumpyint_to_rint(a)
コード例 #4
0
def py2rpy_pandasseries(obj):
    if obj.dtype.name == 'O':
        warnings.warn('Element "%s" is of dtype "O" and converted '
                      'to R vector of strings.' % obj.name)
        res = StrVector(obj)
    elif obj.dtype.name == 'category':
        res = py2rpy_categoryseries(obj)
        res = FactorVector(res)
    elif is_datetime64_any_dtype(obj.dtype):
        # time series
        tzname = obj.dt.tz.zone if obj.dt.tz else ''
        d = [
            IntVector([x.year for x in obj]),
            IntVector([x.month for x in obj]),
            IntVector([x.day for x in obj]),
            IntVector([x.hour for x in obj]),
            IntVector([x.minute for x in obj]),
            FloatSexpVector([x.second + x.microsecond * 1e-6 for x in obj])
        ]
        res = ISOdatetime(*d, tz=StrSexpVector([tzname]))
        # TODO: can the POSIXct be created from the POSIXct constructor ?
        # (is '<M8[ns]' mapping to Python datetime.datetime ?)
        res = POSIXct(res)
    elif (obj.dtype == dt_O_type):
        homogeneous_type = None
        for x in obj.values:
            if x is None:
                continue
            if homogeneous_type is None:
                homogeneous_type = type(x)
                continue
            if type(x) is not homogeneous_type:
                raise ValueError('Series can only be of one type, or None.')
        # TODO: Could this be merged with obj.type.name == 'O' case above ?
        res = {
            int: IntVector,
            bool: BoolVector,
            None: BoolVector,
            str: StrVector,
            bytes: numpy2ri.converter.py2rpy.registry[numpy.ndarray]
        }[homogeneous_type](obj)
    elif obj.dtype.name in integer_array_types:
        if not obj.dtype.numpy_dtype.isnative:
            raise (ValueError('Cannot pass numpy arrays with non-native byte'
                              ' orders at the moment.'))
        if obj.dtype.kind == 'i':
            res = numpy2ri._numpyarray_to_r(obj, IntVector)
        elif obj.dtype.kind == 'u':
            res = numpy2ri.unsignednumpyint_to_rint(obj)
        else:
            raise (ValueError('Unknown pandas dtype "%s".' % str(obj.dtype)))
        if len(obj.shape) == 1:
            if obj.dtype != dt_O_type:
                # force into an R vector
                res = as_vector(res)
    else:
        # converted as a numpy array
        func = numpy2ri.converter.py2rpy.registry[numpy.ndarray]
        # current conversion as performed by numpy

        res = func(obj)
        if len(obj.shape) == 1:
            if (obj.dtype != dt_O_type):
                # force into an R vector
                res = as_vector(res)

    # "index" is equivalent to "names" in R
    if obj.ndim == 1:
        res.do_slot_assign('names',
                           StrVector(tuple(str(x) for x in obj.index)))
    else:
        res.do_slot_assign('dimnames',
                           SexpVector(conversion.py2rpy(obj.index)))
    return res