コード例 #1
0
ファイル: meld.py プロジェクト: Shotgunosine/MELD
    def __init__(self,
                 formula_str,
                 df,
                 factors=None,
                 resid_formula_str=None,
                 **lmer_opts):
        """
        """
        # get the pred_var
        pred_var = formula_str.split('~')[0].strip()

        # convert df to a recarray if it's a dataframe
        if isinstance(df, pd.DataFrame):
            df = df.to_records()

        # add column if necessary
        if pred_var not in df.dtype.names:
            # must add it
            df = append_fields(df, pred_var, [0.0] * len(df), usemask=False)

        # make factor list if necessary
        if factors is None:
            factors = {}
        # add in missingarg for any potential factor not provided
        for k in df.dtype.names:
            if isinstance(df[k][0], str) and k not in factors:
                factors[k] = MissingArg

        for f in factors:
            if factors[f] is None:
                factors[f] = MissingArg
            # checking for both types of R Vectors for rpy2 variations
            elif (not isinstance(factors[f], Vector)
                  and not factors[f] == MissingArg):
                factors[f] = Vector(factors[f])

        # convert the recarray to a DataFrame (releveling if desired)
        self._rdf = DataFrame({
            k: (FactorVector(df[k], levels=factors[k]) if
                (k in factors) or isinstance(df[k][0], str) else df[k])
            for k in df.dtype.names
        })

        # get the column index
        self._col_ind = list(self._rdf.colnames).index(pred_var)

        # make a formula obj
        self._rformula = Formula(formula_str)

        # make one for resid if necessary
        if resid_formula_str:
            self._rformula_resid = Formula(resid_formula_str)
        else:
            self._rformula_resid = None

        # save the args
        self._lmer_opts = lmer_opts

        # model is null to start
        self._ms = None
コード例 #2
0
ファイル: outliers.py プロジェクト: HuttleyLab/gnc
def qcrop2(xlist, ylist, labels=None, nq=4.):
    if labels is None:
        labels = map(str, range(len(xlist)))
    x = []
    y = []
    xcrop = []
    ycrop = []
    facet = []
    for i, (onex, oney) in enumerate(zip(xlist, ylist)):
        xmin, xmax = qlim1(onex, nq)
        ymin, ymax = qlim1(oney, nq)
        cropx, cropy = zip(*[(
            nan,
            nan) if vy > ymax or vy < ymin or vx < xmin or vx > xmax else (vx,
                                                                           vy)
                             for vx, vy in zip(onex, oney)])
        xcrop += cropx
        ycrop += cropy
        x += onex
        y += oney
        facet += [labels[i]] * len(onex)

    df = DataFrame({
        'x':
        FloatVector(x),
        'y':
        FloatVector(y),
        'xcrop':
        FloatVector(xcrop),
        'ycrop':
        FloatVector(ycrop),
        'facet':
        FactorVector(StrVector(facet), levels=StrVector(labels))
    })
    return df
コード例 #3
0
 def __init__(self,
              count_matrix,
              design_matrix,
              conditions,
              gene_column='id'):
     self.dds = None
     self.deseq_result = None
     self.resLFC = None
     self.comparison = None
     self.normalized_count_matrix = None
     self.gene_column = gene_column
     self.gene_id = count_matrix[self.gene_column]
     self.count_matrix = pandas2ri.py2rpy(
         count_matrix.drop(gene_column, axis=1))
     design_formula = "~ "
     for col in conditions:
         levels = design_matrix[col].unique()
         levels = robjects._convert_rpy2py_strvector(levels)
         as_factor = r["as.factor"]
         design_matrix[col] = FactorVector(design_matrix[col],
                                           levels=levels)
         design_matrix[col] = as_factor(design_matrix[col])
         design_formula = design_formula + col + " +"
     design_formula = design_formula[:-2]
     self.design_matrix = pandas2ri.py2rpy(design_matrix)
     self.design_formula = Formula(design_formula)
コード例 #4
0
def tupls2RDataframe(data, titles):
    cols = [[] for _ in titles]
    for datum in data:
        for i, e in enumerate(datum):
            cols[i].append(e)
    col_d = {}
    for i, t in enumerate(titles):
        col_d[t] = StrVector(tuple(cols[i]))
        col_d[t] = FactorVector(col_d[t])
    dataf = DataFrame(col_d)
    return dataf
コード例 #5
0
    def FitChiralCont_1Slope_Cross(self, a_r0_sqr, Categorical_Var):
        import rpy2.robjects as robjects
        from rpy2.robjects import FloatVector
        from rpy2.robjects import FactorVector
        from rpy2.robjects.packages import importr

        self.NumSlope = 1

        stats = importr('stats')
        base = importr('base')

        Temp_Jack_Mean_List = self.EnsembleJAvgList
        self.CoeffList = []
        robjects.globalenv["a_r0_sqr"] = FloatVector(a_r0_sqr)
        robjects.globalenv["Spacing"] = FactorVector(Categorical_Var)
        robjects.globalenv["M_pi_sqr"] = FloatVector(self.Indep_Var_List)
        r_weight = [pow(x, 2) for x in self.EnsembleWeight]
        robjects.globalenv["PointValueList"] = FloatVector(self.PointValueList)
        for j in range(0, len(self.EnsembleNameList), 1):
            for x in (self.EnsembleJackList[j]):
                Temp_Jack_Mean_List[j] = x
                robjects.globalenv["TempJackMean"] = FloatVector(
                    Temp_Jack_Mean_List)
                #Coeff=(stats.lm("TempJackMean ~ Spacing:M_pi_sqr+a_r0_sqr","weights=EnsembleWeight"))[0]
                Coeff = np.asarray(
                    (stats.lm("TempJackMean ~ M_pi_sqr*a_r0_sqr",
                              weights=FloatVector(r_weight)))[0])
                #Coeff=np.polyfit(self.Indep_Var_List,Temp_Jack_Mean_List,1)
                #				vector=numpy.asarray(vector_R)
                self.CoeffList.append(Coeff)
            Temp_Jack_Mean_List = self.EnsembleJAvgList
        self.StdErr = self.ComputeStdError(self.CoeffList)
        JackAvg = sum(self.CoeffList) / len(self.CoeffList)
        self.FitAvg = np.asarray(
            (stats.lm("PointValueList ~ M_pi_sqr*a_r0_sqr",
                      weights=FloatVector(r_weight)))[0])
        #print(self.StdErr)
        #CoeffList
        self.InterceptError = self.StdErr[1]
        self.SlopeError = self.StdErr[0]
        self.FitCoeff = self.FitAvg  ####Fix
        #self.FitCoeff=self.FitAvg - (len(self.CoeffList)-1)*(JackAvg-self.FitAvg)	##Fix this to be unbiased
        self.Intercept = self.FitCoeff[1]
        self.Slope = self.FitCoeff[0]
        self.PrintResults()
コード例 #6
0
    def __init__(
            self,
            fe_formula,
            re_formula,
            re_group,
            dep_data,
            ind_data,
            factors=None,
            row_mask=None,
            use_ranks=False,
            use_norm=True,
            memmap=False,
            memmap_dir=None,
            resid_formula=None,
            null_formula=None,
            num_null_boot=0,
            svd_terms=None,
            use_ssvd=False,
            #nperms=500, nboot=100,
            n_jobs=1,
            verbose=10,
            lmer_opts=None):
        """
        """
        if verbose > 0:
            sys.stdout.write('Initializing...')
            sys.stdout.flush()
            start_time = time.time()

        # save the formula
        self._formula_str = fe_formula + ' + ' + re_formula

        # see if there's a resid formula
        if resid_formula:
            # the random effects are the same
            self._resid_formula_str = resid_formula + ' + ' + re_formula
        else:
            self._resid_formula_str = None

        # see if there's a null formula
        if null_formula:
            # the random effects are the same
            self._null_formula_str = null_formula + ' + ' + re_formula
        else:
            self._null_formula_str = None
        self._num_null_boot = num_null_boot

        # save whether using ranks
        self._use_ranks = use_ranks

        # see whether to use sparse svd
        self._use_ssvd = use_ssvd

        # see if memmapping
        self._memmap = memmap

        # save job info
        self._n_jobs = n_jobs
        self._verbose = verbose

        # eventually fill the feature shape
        self._feat_shape = None

        # fill A,M,O,D
        self._A = {}
        self._M = {}
        self._O = {}
        self._D = {}
        O = []

        # loop over unique grouping var
        self._re_group = re_group
        if isinstance(ind_data, dict):
            # groups are the keys
            self._groups = np.array(list(ind_data.keys()))
        else:
            # groups need to be extracted from the recarray
            self._groups = np.unique(ind_data[re_group])
        for g in self._groups:
            # get that subj inds
            if isinstance(ind_data, dict):
                # the index is just the group into that dict
                ind_ind = g
            else:
                # select the rows based on the group
                ind_ind = ind_data[re_group] == g

            # process the row mask
            if row_mask is None:
                # no mask, so all good
                row_ind = np.ones(len(ind_data[ind_ind]), dtype=np.bool)
            elif isinstance(row_mask, dict):
                # pull the row_mask from the dict
                row_ind = row_mask[g]
            else:
                # index into it with ind_ind
                row_ind = row_mask[ind_ind]

            # extract that group's A,M,O
            # first save the observations (rows of A)
            self._O[g] = ind_data[ind_ind][row_ind]
            if use_ranks:
                # loop over non-factors and rank them
                for n in self._O[g].dtype.names:
                    if (n in factors) or isinstance(self._O[g][n][0], str):
                        continue
                    self._O[g][n] = rankdata(self._O[g][n])
            O.append(self._O[g])

            # eventually allow for dict of data files for dep_data
            if isinstance(dep_data, dict):
                # the index is just the group into that dict
                dep_ind = g
            else:
                # select the rows based on the group
                dep_ind = ind_ind

            # save feature shape if necessary
            if self._feat_shape is None:
                self._feat_shape = dep_data[dep_ind].shape[1:]

            # Save D index into data
            self._D[g] = dep_data[dep_ind][row_ind]
            # reshape it
            self._D[g] = self._D[g].reshape((self._D[g].shape[0], -1))
            if use_ranks:
                if verbose > 0:
                    sys.stdout.write('Ranking %s...' % (str(g)))
                    sys.stdout.flush()

                for i in range(self._D[g].shape[1]):
                    self._D[g][:, i] = rankdata(self._D[g][:, i])

            # reshape M, so we don't have to do it repeatedly
            self._M[g] = self._D[g].copy(
            )  #dep_data[ind].reshape((dep_data[ind].shape[0],-1))

            # normalize M
            if use_norm:
                self._M[g] -= self._M[g].mean(0)
                self._M[g] /= np.sqrt((self._M[g]**2).sum(0))

            # determine A from the model.matrix
            rdf = DataFrame({
                k: (FactorVector(self._O[g][k])
                    if k in factors else self._O[g][k])
                for k in self._O[g].dtype.names
            })

            # model spec as data frame
            ms = r['data.frame'](r_model_matrix(Formula(fe_formula), data=rdf))

            cols = list(r['names'](ms))
            if svd_terms is None:
                self._svd_terms = [c for c in cols if not 'Intercept' in c]
            else:
                self._svd_terms = svd_terms
            self._A[g] = np.concatenate(
                [np.array(ms.rx(c)) for c in self._svd_terms]).T
            #for c in cols if not 'Intercept' in c]).T

            if use_ranks:
                for i in range(self._A[g].shape[1]):
                    self._A[g][:, i] = rankdata(self._A[g][:, i])

            # normalize A
            if True:  #use_norm:
                self._A[g] -= self._A[g].mean(0)
                self._A[g] /= np.sqrt((self._A[g]**2).sum(0))

            # memmap if desired
            if self._memmap:
                self._M[g] = _memmap_array(self._M[g], memmap_dir)
                self._D[g] = _memmap_array(self._D[g], memmap_dir)

        # concat the Os together and make an LMER instance
        #O = np.concatenate(O)
        #self._O = np.vstack(O)
        #self._O = np.array(O)
        self._O = O
        if lmer_opts is None:
            lmer_opts = {}
        self._lmer_opts = lmer_opts
        self._factors = factors
        #self._lmer = LMER(self._formula_str, O, factors=factors, **lmer_opts)

        # prepare for the perms and boots
        self._perms = []
        self._boots = []
        self._tp = []
        self._tb = []

        if verbose > 0:
            sys.stdout.write('Done (%.2g sec)\n' % (time.time() - start_time))
            sys.stdout.write('Processing actual data...')
            sys.stdout.flush()
            start_time = time.time()

        global _global_meld
        _global_meld[id(self)] = self

        # run for actual data (returns both perm and boot vals)
        self._R = None
        self._ss = None
        self._mer = None
        self._mer_null = None
        tp, tb, R, feat_mask, ss, mer, mer_null = _eval_model(
            id(self), None, None)
        self._R = R
        self._tp.append(tp)
        self._tb.append(tb)
        self._feat_mask = feat_mask
        self._ss = ss
        self._mer = mer
        self._mer_null = mer_null

        if verbose > 0:
            sys.stdout.write('Done (%.2g sec)\n' % (time.time() - start_time))
            sys.stdout.flush()
コード例 #7
0
def lmer_feature(formula_str,
                 dat,
                 perms=None,
                 val=None,
                 factors=None,
                 **kwargs):
    """
    Run LMER on a number of permutations of the predicted data.


    """
    # get the perm_var
    perm_var = formula_str.split('~')[0].strip()

    # set the val if necessary
    if not val is None:
        dat[perm_var] = val

    # make factor list if necessary
    if factors is None:
        factors = []

    # convert the recarray to a DataFrame
    rdf = DataFrame({
        k: (FactorVector(dat[k]) if
            (k in factors) or isinstance(dat[k][0], str) else dat[k])
        for k in dat.dtype.names
    })

    #rdf = com.convert_to_r_dataframe(pd.DataFrame(dat),strings_as_factors=True)

    # get the column index
    col_ind = list(rdf.colnames).index(perm_var)

    # make a formula obj
    rformula = Formula(formula_str)

    # just apply to actual data if no perms
    if perms is None:
        #perms = [np.arange(len(dat))]
        perms = [None]

    # run on each permutation
    tvals = None
    for i, perm in enumerate(perms):
        if not perm is None:
            # set the perm
            rdf[col_ind] = rdf[col_ind].rx(perm + 1)

        # inside try block to catch convergence errors
        try:
            ms = lme4.lmer(rformula, data=rdf, **kwargs)
        except:
            continue
            #tvals.append(np.array([np.nan]))
        # extract the result

        df = r['data.frame'](r_coef(r['summary'](ms)))
        if tvals is None:
            # init the data
            # get the row names
            rows = list(r['row.names'](df))
            tvals = np.rec.fromarrays(
                [np.ones(len(perms)) * np.nan for ro in range(len(rows))],
                names=','.join(rows))
        tvals[i] = tuple(df.rx2('t.value'))

    return tvals
コード例 #8
0
    def __init__(self,
                 fe_formula,
                 re_formula,
                 re_group,
                 dep_data,
                 ind_data,
                 factors=None,
                 row_mask=None,
                 dep_mask=None,
                 use_ranks=False,
                 use_norm=True,
                 memmap=False,
                 memmap_dir=None,
                 resid_formula=None,
                 svd_terms=None,
                 feat_thresh=0.05,
                 feat_nboot=1000,
                 do_tfce=False,
                 connectivity=None,
                 shape=None,
                 dt=.01,
                 E=2 / 3.,
                 H=2.0,
                 n_jobs=1,
                 verbose=10,
                 lmer_opts=None):
        """

        dep_data can be an array or a dict of arrays (possibly
        memmapped), one for each group.

        ind_data can be a rec_array for each group or one large rec_array
        with a grouping variable.

        """
        if verbose > 0:
            sys.stdout.write('Initializing...')
            sys.stdout.flush()
            start_time = time.time()

        # save the formula
        self._formula_str = fe_formula + ' + ' + re_formula

        # see if there's a resid formula
        if resid_formula:
            # the random effects are the same
            self._resid_formula_str = resid_formula + ' + ' + re_formula
        else:
            self._resid_formula_str = None

        # save whether using ranks
        self._use_ranks = use_ranks

        # see the thresh for keeping a feature
        self._feat_thresh = feat_thresh
        self._feat_nboot = feat_nboot
        self._do_tfce = do_tfce
        self._connectivity = connectivity
        self._dt = dt
        self._E = E
        self._H = H

        # see if memmapping
        self._memmap = memmap

        # save job info
        self._n_jobs = n_jobs
        self._verbose = verbose

        # eventually fill the feature shape
        self._feat_shape = None

        # handle the dep_mask
        self._dep_mask = dep_mask

        # fill A,M,O,D
        self._A = {}
        self._M = {}
        self._O = {}
        self._D = {}
        O = []

        # loop over unique grouping var
        self._re_group = re_group
        if isinstance(ind_data, dict):
            # groups are the keys
            self._groups = np.array(ind_data.keys())
        else:
            # groups need to be extracted from the recarray
            self._groups = np.unique(ind_data[re_group])
        for g in self._groups:
            # get that subj inds
            if isinstance(ind_data, dict):
                # the index is just the group into that dict
                ind_ind = g
            else:
                # select the rows based on the group
                ind_ind = ind_data[re_group] == g

            # process the row mask
            if row_mask is None:
                # no mask, so all good
                row_ind = np.ones(len(ind_data[ind_ind]), dtype=np.bool)
            elif isinstance(row_mask, dict):
                # pull the row_mask from the dict
                row_ind = row_mask[g]
            else:
                # index into it with ind_ind
                row_ind = row_mask[ind_ind]

            # extract that group's A,M,O
            # first save the observations (rows of A)
            self._O[g] = ind_data[ind_ind][row_ind]
            if use_ranks:
                # loop over non-factors and rank them
                for n in self._O[g].dtype.names:
                    if (n in factors) or isinstance(self._O[g][n][0], str):
                        continue
                    self._O[g][n] = rankdata(self._O[g][n])
            O.append(self._O[g])

            # eventually allow for dict of data files for dep_data
            if isinstance(dep_data, dict):
                # the index is just the group into that dict
                dep_ind = g
            else:
                # select the rows based on the group
                dep_ind = ind_ind

            # save feature shape if necessary
            if self._feat_shape is None:
                self._feat_shape = dep_data[dep_ind].shape[1:]

            # handle the mask
            if self._dep_mask is None:
                self._dep_mask = np.ones(self._feat_shape, dtype=np.bool)

            # create the connectivity (will mask later)
            if self._do_tfce and self._connectivity is None and \
               (len(self._dep_mask.flatten()) > self._dep_mask.sum()):
                # create the connectivity
                self._connectivity = cluster.sparse_dim_connectivity(
                    [cluster.simple_neighbors_1d(n) for n in self._feat_shape])

            # Save D index into data (apply row and feature masks
            # This will also reshape it
            self._D[g] = dep_data[dep_ind][row_ind][:, self._dep_mask].copy()

            # reshape it
            #self._D[g] = self._D[g].reshape((self._D[g].shape[0], -1))
            if use_ranks:
                if verbose > 0:
                    sys.stdout.write('Ranking %s...' % (str(g)))
                    sys.stdout.flush()

                for i in xrange(self._D[g].shape[1]):
                    # rank it
                    self._D[g][:, i] = rankdata(self._D[g][:, i])

                    # normalize it
                    self._D[g][:, i] = ((self._D[g][:, i] - 1) /
                                        (len(self._D[g][:, i]) - 1))

            # save M from D so we can have a normalized version
            self._M[g] = self._D[g].copy()

            # remove any NaN's in dep_data
            self._D[g][np.isnan(self._D[g])] = 0.0

            # normalize M
            if use_norm:
                self._M[g] -= self._M[g].mean(0)
                self._M[g] /= np.sqrt((self._M[g]**2).sum(0))

            # determine A from the model.matrix
            rdf = DataFrame({
                k: (FactorVector(self._O[g][k])
                    if k in factors else self._O[g][k])
                for k in self._O[g].dtype.names
            })

            # model spec as data frame
            ms = r['data.frame'](r_model_matrix(Formula(fe_formula), data=rdf))

            cols = list(r['names'](ms))
            if svd_terms is None:
                self._svd_terms = [c for c in cols if 'Intercept' not in c]
            else:
                self._svd_terms = svd_terms

            # self._A[g] = np.vstack([ms[c] #np.array(ms.rx(c))
            self._A[g] = np.concatenate(
                [np.array(ms.rx(c)) for c in self._svd_terms]).T

            if use_ranks:
                for i in xrange(self._A[g].shape[1]):
                    # rank it
                    self._A[g][:, i] = rankdata(self._A[g][:, i])

                    # normalize it
                    self._A[g][:, i] = ((self._A[g][:, i] - 1) /
                                        (len(self._A[g][:, i]) - 1))

            # normalize A
            if True:  # use_norm:
                self._A[g] -= self._A[g].mean(0)
                self._A[g] /= np.sqrt((self._A[g]**2).sum(0))

            # memmap if desired
            if self._memmap:
                self._M[g] = _memmap_array(self._M[g],
                                           memmap_dir,
                                           unique_id=str(g))
                self._D[g] = _memmap_array(self._D[g],
                                           memmap_dir,
                                           unique_id=str(g))

        # save the new O
        self._O = O
        if lmer_opts is None:
            lmer_opts = {}
        self._lmer_opts = lmer_opts
        self._factors = factors

        # mask the connectivity
        if self._do_tfce and (len(self._dep_mask.flatten()) >
                              self._dep_mask.sum()):
            self._connectivity = self._connectivity.tolil()[
                self._dep_mask.flatten()][:, self._dep_mask.flatten()].tocoo()

        # prepare for the perms and boots and jackknife
        self._perms = []
        self._tp = []
        self._tb = []
        self._tj = []
        self._pfmask = []

        if verbose > 0:
            sys.stdout.write('Done (%.2g sec)\n' % (time.time() - start_time))
            sys.stdout.write('Processing actual data...')
            sys.stdout.flush()
            start_time = time.time()

        global _global_meld
        _global_meld[id(self)] = self

        # run for actual data (returns both perm and boot vals)
        self._R = None
        self._ss = None
        self._mer = None
        tp, tb, R, feat_mask, ss, mer = _eval_model(id(self), None)
        self._R = R
        self._tp.append(tp)
        self._tb.append(tb)
        self._feat_mask = feat_mask
        self._fmask = ~feat_mask[0]
        self._pfmask.append(~feat_mask[0])
        self._ss = ss
        self._mer = mer

        if verbose > 0:
            sys.stdout.write('Done (%.2g sec)\n' % (time.time() - start_time))
            sys.stdout.flush()
コード例 #9
0
    def FitChiralCont_1Slope_Cross_wSubtraction_NoIntercept(
            self, a_r0_sqr, Categorical_Var, filepath):
        import rpy2.robjects as robjects
        from rpy2.robjects import FloatVector
        from rpy2.robjects import FactorVector
        from rpy2.robjects.packages import importr

        self.NumSlope = 1

        stats = importr('stats')
        base = importr('base')

        Temp_Jack_Mean_List = self.EnsembleJAvgList
        SubtractionJackList = []
        self.CoeffList = []
        robjects.globalenv["a_r0_sqr"] = FloatVector(a_r0_sqr)
        robjects.globalenv["Spacing"] = FactorVector(Categorical_Var)
        robjects.globalenv["M_pi_sqr"] = FloatVector(self.Indep_Var_List)
        r_weight = [pow(x, 2) for x in self.EnsembleWeight]
        robjects.globalenv["PointValueList"] = FloatVector(self.PointValueList)
        for j in range(0, len(self.EnsembleNameList), 1):
            for x in (self.EnsembleJackList[j]):
                Temp_Jack_Mean_List[j] = x
                robjects.globalenv["TempJackMean"] = FloatVector(
                    Temp_Jack_Mean_List)
                #Coeff=(stats.lm("TempJackMean ~ Spacing:M_pi_sqr+a_r0_sqr","weights=EnsembleWeight"))[0]
                Coeff = np.asarray(
                    (stats.lm("TempJackMean ~0.0+ M_pi_sqr*a_r0_sqr",
                              weights=FloatVector(r_weight)))[0])
                #Coeff=np.polyfit(self.Indep_Var_List,Temp_Jack_Mean_List,1)
                #				vector=numpy.asarray(vector_R)
                self.CoeffList.append(Coeff)
                SubtractionList = []
                for k in range(0, len(a_r0_sqr), 1):  ###### FIX
                    SubtractionList.append(Temp_Jack_Mean_List[k] -
                                           a_r0_sqr[k] * Coeff[1] -
                                           a_r0_sqr[k] *
                                           self.Indep_Var_List[k] * Coeff[2])
        #			SubtractionList.append(Temp_Jack_Mean_List[k])
                SubtractionJackList.append(SubtractionList)
            Temp_Jack_Mean_List = self.EnsembleJAvgList
        self.StdErr = self.ComputeStdError(self.CoeffList)
        JackAvg = sum(self.CoeffList) / len(self.CoeffList)
        self.FitAvg = np.asarray(
            (stats.lm("PointValueList ~ 0+ M_pi_sqr*a_r0_sqr",
                      weights=FloatVector(r_weight)))[0])

        Rev_SubtractionJackList = []
        #		print(len(SubtractionJackList[]))
        SubtractJackAvg = []
        SubtractJackErr = []
        for i in range(0, len(a_r0_sqr), 1):
            Temp = []
            for j in range(0, len(SubtractionJackList), 1):
                Temp.append(SubtractionJackList[j][i])
            Rev_SubtractionJackList.append(Temp)
            #SubtractJackAvg.append(sum(Rev_SubtractionJackList[i])/len(Rev_SubtractionJackList))
            #SubtractJackErr.append(self.ComputeStdError(Rev_SubtractionJackList[i]))
        print(len(Rev_SubtractionJackList[1]))
        #print(self.StdErr)
        #CoeffList

        for x in Rev_SubtractionJackList:
            #SubtractJackAvg.append(sum(x)/len(x))
            #			print(len(x))
            #                        SubtractJackAvg.append()
            SubtractJackErr.append(self.ComputeStdError(x))
        #SubtractJackAvg=self.PointValueList
        for k in range(0, len(a_r0_sqr), 1):  ###FIX
            SubtractJackAvg.append(self.PointValueList[k] -
                                   a_r0_sqr[k] * self.FitAvg[1] - a_r0_sqr[k] *
                                   self.Indep_Var_List[k] * self.FitAvg[2])

#		print(self.FitAvg)

        self.InterceptError = self.StdErr[1]
        self.SlopeError = self.StdErr[0]
        self.FitCoeff = self.FitAvg  ####Fix
        #self.FitCoeff=self.FitAvg - (len(self.CoeffList)-1)*(JackAvg-self.FitAvg)	##Fix this to be unbiased
        self.Intercept = self.FitCoeff[1]
        self.Slope = self.FitCoeff[0]
        self.PrintResults()

        f = open(filepath, "w")
        output = 'PointName,TopSus,TopSus_Error,r0_Mpi_sqr,PlotName,PointId\n'
        f.write(output)
        for i in range(0, len(self.EnsembleNameList), 1):
            output = self.EnsembleNameList[i] + ',' + str(
                SubtractJackAvg[i]) + ',' + str(
                    SubtractJackErr[i]) + ',' + str(
                        self.Indep_Var_List[i]) + ',' + str(
                            self.Name) + ',' + str(self.PointIdList[i]) + '\n'
            f.write(output)
        f.close()