class Config(ParentConfig): train_out_dir = ParentConfig.model_outdir + '/0036_3x3_pretrained_stage2' train_dataset_file = '5fold-test.csv' val_dataset_file = '5fold-test.csv' test_dataset_file = 'test2.csv' data_version = '3d' # '3d', 'npy', 'npy256' etc. use_cq500 = False gpus = [0] val_folds = [0] train_folds = get_train_folds(val_folds) folds_str = '/fold' + get_val_folds_str(val_folds) train_out_dir += folds_str backbone = 'resnet34' # 'imagenet', None or path to weights # pretrained = 'imagenet' pretrained = ParentConfig.model_outdir + f'/0034_resnet34_3c/{folds_str}/models/*' pretrained = sorted(glob.glob(pretrained))[-1]
class Config(BaseConfig): train_out_dir = BaseConfig.model_outdir + '/0034_resnet34_3c' train_dataset_file = '5fold.csv' val_dataset_file = '5fold.csv' test_dataset_file = 'test.csv' data_version = '3d' # '3d', 'npy', 'npy256' etc. use_cq500 = False val_folds = [0] train_folds = get_train_folds(val_folds) train_out_dir += '/fold' + get_val_folds_str(val_folds) # backbone = 'se_resnext50' backbone = 'resnet34' # 'imagenet', None or path to weights pretrained = 'imagenet' # pretrained = '/kolos/m2/ct/models/classification/rsna/0014_384/0123/models/_ckpt_epoch_2.ckpt' lr = 1e-4 batch_size = 64 # 16 (3, 512, 512) images fits on TITAN XP accumulate_grad_batches = 1 dropout = 0.5 weight_decay = 0.001 optimizer = 'radam' scheduler = { 'name': 'flat_anneal', 'flat_iterations': 8000, 'anneal_iterations': 12000, 'min_lr': 1e-7 } # scheduler = { # 'name': 'LambdaLR', # 'iter_to_lr': { # 0: 1e-3, # 4000: 1e-4, # 14000: 2e-5, # 24000: 4e-6 # }, # } freeze_backbone_iterations = 2000 freeze_first_layer = True gpus = [0] num_workers = 3 * len(gpus) max_epoch = 20 num_slices = 3 # must be odd pre_crop_size = 400 crop_size = 384 padded_size = None shift_limit = 0 random_crop = True vertical_flip = False pixel_augment = False elastic_transform = False use_cdf = True augment = True # used only if use_cdf is False min_hu_value = 20 max_hu_value = 100 balancing = False # 'epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural', no_bleeding probas = [0.1, 0.14, 0.14, 0.14, 0.14, 0.34] multibranch = False # use 3d conv to merge features from different branches multibranch3d = False multibranch_embedding = 256 # number of input channels to each branch multibranch_input_channels = 3 num_branches = 3 # None, or list of slices' indices ordering them before splitting between branches, # length must be equal to num_branches * multibranch_input_channels multibranch_channel_indices = None # multibranch_channel_indices = [0, 1, 2, 1, 2, 3, 2, 3, 4] contextual_attention = False spatial_attention = False
class Config(BaseConfig): train_out_dir = BaseConfig.model_outdir + '/seg0003_ours_any_iou' train_dataset_file = '5fold.csv' val_dataset_file = '5fold.csv' test_dataset_file = 'test.csv' data_version = '3d' # '3d', 'npy', 'npy256' etc. val_folds = [0] train_folds = get_train_folds(val_folds) folds_str = '/fold' + get_val_folds_str(val_folds) train_out_dir += folds_str backbone = 'se_resnext50_32x4d' # 'imagenet', None or path to weights # pretrained = 'imagenet' pretrained = BaseConfig.model_outdir + f'/0014_384/{folds_str}/models/*' pretrained = sorted(glob.glob(pretrained))[-1] lr = 2e-4 decoder_lr = 2e-4 encoder_lr = 8e-6 batch_size = 14 weight_decay = 0.001 optimizer = 'radam' scheduler = { 'name': 'flat_anneal', 'flat_iterations': 3000, 'anneal_iterations': 7000, 'min_lr': 1e-6 } gpus = [0] num_workers = 3 * len(gpus) max_epoch = 60 negative_data_steps = [2000, 4500, 7000] # negative_data_steps = None num_slices = 3 # must be odd pre_crop_size = 400 train_image_size = 448 crop_size = 384 random_crop = False center_crop = False shift_value = 0.04 vertical_flip = False pixel_augment = False elastic_transform = False use_cdf = True augment = True # used only if use_cdf is False min_hu_value = 20 max_hu_value = 100
class Config(BaseConfig): train_out_dir = BaseConfig.model_outdir + '/0038_7s_res50_400' gpus = [0] train_dataset_file = '5fold-rev3.csv' val_dataset_file = '5fold.csv' test_dataset_file = 'test.csv' data_version = '3d' # '3d', 'npy', 'npy256' etc. use_cq500 = False val_folds = [0] train_folds = get_train_folds(val_folds) folds_str = '/fold' + get_val_folds_str(val_folds) train_out_dir += folds_str backbone = 'se_resnext50' # 'imagenet', None or path to weights pretrained = BaseConfig.model_outdir + f'/0014_384/{folds_str}/models/*' pretrained = sorted(glob.glob(pretrained))[-1] lr = 1e-4 batch_size = 24 # 16 (3, 512, 512) images fits on TITAN XP accumulate_grad_batches = 1 dropout = 0 weight_decay = 0.001 optimizer = 'radam' scheduler = { 'name': 'flat_anneal', 'flat_iterations': 16000, 'anneal_iterations': 32000, 'min_lr': 1e-7 } freeze_backbone_iterations = 0 freeze_first_layer = False num_workers = 3 * len(gpus) max_epoch = 20 append_masks = False num_slices = 7 # must be odd pre_crop_size = 400 padded_size = None crop_size = 400 shift_limit = 0.1 random_crop = False vertical_flip = False pixel_augment = False elastic_transform = False use_cdf = True augment = True # used only if use_cdf is False min_hu_value = 20 max_hu_value = 100 balancing = False # 'epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural', no_bleeding probas = [0.1, 0.14, 0.14, 0.14, 0.14, 0.34] multibranch = False # use 3d conv to merge features from different branches multibranch3d = False multibranch_embedding = 256 # number of input channels to each branch multibranch_input_channels = 3 num_branches = 3 # None, or list of slices' indices ordering them before splitting between branches, # length must be equal to num_branches * multibranch_input_channels multibranch_channel_indices = None # multibranch_channel_indices = [0, 1, 2, 1, 2, 3, 2, 3, 4] contextual_attention = False spatial_attention = False