コード例 #1
0
ファイル: check_annotation.py プロジェクト: bohaohuang/sis
def check_gt_plot2(rgb_file, city_name, city_id, tower_gt):
    if city_name == 'USA_KS_Colwich_Maize':
        city_name = 'Colwich_Maize'
    if city_name == 'NZ_Palmerston North':
        city_name = 'PalmerstonNorth'
    try:
        line_gt = misc_utils.load_file(
            os.path.join(
                r'/media/ei-edl01/data/uab_datasets/lines_v3/data/Original_Tiles',
                '{}{}_GT.png'.format(city_name, city_id)))
        line_gt = cv2.dilate(line_gt, np.ones((5, 5), np.uint8), iterations=3)

        plt.figure(figsize=(8, 6))
        rgb = misc_utils.load_file(rgb_file)
        rgb = util_functions.add_mask(rgb, line_gt, [0, 255, 0], 1)
        plt.imshow(rgb)
        # visualize_with_connected_pairs(rgb, tower_gt, line_gt, style='r', add_fig=True)
        center_points = np.array(tower_gt)
        plt.scatter(center_points[:, 1],
                    center_points[:, 0],
                    c='g',
                    s=40,
                    marker='o',
                    alpha=1,
                    edgecolors='k')
        plt.title('{} {}'.format(city_name, city_id))
        plt.axis('off')
        plt.tight_layout()
        plt.show()
    except:
        pass
コード例 #2
0
ファイル: quality_assurance.py プロジェクト: bohaohuang/sis
def check_gt_plot(city_name, city_id, tower_gt, line_gt):
    if city_name == 'Colwich':
        city_name = 'Colwich_Maize'
    img_dir = r'/home/lab/Documents/bohao/data/transmission_line/raw'
    rgb_file = glob(
        os.path.join(img_dir, '*_{}_{}.tif'.format(city_name, city_id)))

    line_gt = misc_utils.load_file(
        os.path.join(
            r'/media/ei-edl01/data/uab_datasets/lines/data/Original_Tiles',
            '{}{}_GT.png'.format(city_name, city_id)))
    line_gt = cv2.dilate(line_gt, np.ones((5, 5), np.uint8), iterations=10)

    plt.figure(figsize=(8, 6))
    assert len(rgb_file) == 1
    rgb = misc_utils.load_file(rgb_file[0])
    rgb = util_functions.add_mask(rgb, line_gt, [0, 255, 0], 1)
    plt.imshow(rgb)
    # visualize_with_connected_pairs(rgb, tower_gt, line_gt, style='r', add_fig=True)
    center_points = np.array(tower_gt)
    plt.scatter(center_points[:, 1],
                center_points[:, 0],
                c='g',
                s=40,
                marker='o',
                alpha=1,
                edgecolors='k')
    plt.title('{} {}'.format(city_name, city_id))
    plt.axis('off')
    plt.tight_layout()
    plt.show()
コード例 #3
0
ファイル: make_fvis_example.py プロジェクト: bohaohuang/sis
def load_data(rgb_dir, conf_dir):
    img = misc_utils.load_file(os.path.join(rgb_dir, 'USA_{}_{}.tif'.format(city_list[city_id], tile_id)))
    tower_file = os.path.join(rgb_dir, 'USA_{}_{}.csv'.format(city_list[city_id], tile_id))
    tower_gt = read_tower_truth(tower_file)
    line_file = os.path.join(rgb_dir, 'USA_{}_{}.csv'.format(city_list[city_id], tile_id))
    line_gt = read_lines_truth(line_file, tower_gt)
    line_conf = misc_utils.load_file(
        os.path.join(conf_dir, '{}{}.png'.format(city_list[city_id].split('_')[1], tile_id)))

    return img, tower_gt, line_gt, line_conf
コード例 #4
0
def main():
    data_dir = r'/media/ei-edl01/data/remote_sensing_data/transmission_line/New_Zealand'
    city_list = ['Gisborne', 'Palmertson', 'Rotorua', 'Tauranga']
    for city in city_list:
        image_dir = os.path.join(data_dir, 'New_Zealand_{}'.format(city))
        img_list = glob(os.path.join(image_dir, '*.tif'))
        rgb_list = natsorted([a for a in img_list if 'multiclass' not in a and 'resize' not in a])
        gt_list = natsorted([a for a in img_list if 'multiclass' in a])
        assert len(rgb_list) == len(gt_list)
        for rgb_file, gt_file in zip(rgb_list, gt_list):
            print(os.path.basename(rgb_file), os.path.basename(gt_file))
            rgb = misc_utils.load_file(rgb_file)
            gt = misc_utils.load_file(gt_file)
            visualize.compare_figures([rgb, gt], (1, 2), fig_size=(12, 5))
コード例 #5
0
def load_data(dirs, city_id, tile_id):
    line_gt = misc_utils.load_file(
        os.path.join(
            dirs['line'],
            '{}{}_GT.png'.format(city_list[city_id].split('_')[1], tile_id)))
    tower_gt = get_tower_truth_pred(dirs, city_id, tile_id)
    return line_gt, tower_gt
コード例 #6
0
ファイル: make_line_data_mlp.py プロジェクト: bohaohuang/sis
def write_features(raw_dir, city_list, city_id, tile_id, model):
    raw_rgb = misc_utils.load_file(
        os.path.join(raw_dir, 'USA_{}_{}.tif'.format(city_list[city_id],
                                                     tile_id)))
    tile_dim = raw_rgb.shape

    # get tower truth
    gt_list = []
    csv_file_name = os.path.join(
        raw_dir, 'USA_{}_{}.csv'.format(city_list[city_id], tile_id))
    for label, bbox in read_polygon_csv_data(csv_file_name):
        y, x = get_center_point(*bbox)
        gt_list.append([y, x])

    # get features
    feature = []
    for start, stop, online_points in read_line_csv_data(
            csv_file_name, gt_list):
        centers = add_point_if_not_nearby(start, stop,
                                          [gt_list[a] for a in online_points])

        for c in centers:
            c = [int(a) for a in c]
            region = [
                c[0] - patch_size[0] // 2, c[1] - patch_size[1] // 2,
                *patch_size
            ]
            region = get_region_bounds(region, tile_dim)
            img_patch = raw_rgb[region[0]:region[0] + region[2],
                                region[1]:region[1] + region[3], :]
            feature.append(model.get_feature(img_patch))
    return np.array(feature)
コード例 #7
0
def load_data(model_name, ds_name, patch_size):
    assert model_name in ['unet', 'deeplab']
    if model_name == 'unet':
        model_dir = 'UnetCrop_inria_decay_0_PS(572, 572)_BS5_EP100_LR0.0001_DS60.0_DR0.1_SFN32'
    else:
        model_dir = 'DeeplabV3_inria_decay_0_PS(321, 321)_BS5_EP100_LR1e-05_DS40.0_DR0.1_SFN32'
    result_file = os.path.join(r'/hdd/Results/size', model_dir,
                               '{}_{}'.format(ds_name,
                                              patch_size), 'result.txt')
    results = misc_utils.load_file(result_file)
    return parse_results(results)
コード例 #8
0
ファイル: make_results_cmp.py プロジェクト: bohaohuang/sis
def load_data(rgb_dir, task_dir, city_id, tile_id, model_name='faster_rcnn'):
    img = misc_utils.load_file(
        os.path.join(rgb_dir, 'USA_{}_{}.tif'.format(city_list[city_id],
                                                     tile_id)))
    pred_vis_tower = misc_utils.load_file(
        os.path.join(
            task_dir, 'post_{}_{}_{}_pred2.npy'.format(model_name, city_id,
                                                       tile_id)))
    pred_vis_lines = misc_utils.load_file(
        os.path.join(
            task_dir, 'post_{}_{}_{}_conn2.npy'.format(model_name, city_id,
                                                       tile_id)))

    pred_topo_tower = get_tower_pred(
        os.path.join(task_dir, model_name,
                     'USA_{}_{}.txt'.format(city_list[city_id], tile_id)))
    pred_topo_lines = misc_utils.load_file(
        os.path.join(
            task_dir,
            '{}_graph_rnn_normal_{}_{}.npy'.format(model_name, city_id,
                                                   tile_id)))
    pred_combine_tower = pred_vis_tower
    pred_combine_lines = misc_utils.load_file(
        os.path.join(
            task_dir, '{}_graph_rnn_{}_{}.npy'.format(model_name, city_id,
                                                      tile_id)))

    tower_file = os.path.join(
        rgb_dir, 'USA_{}_{}.csv'.format(city_list[city_id], tile_id))
    tower_gt = read_tower_truth(tower_file)
    line_file = os.path.join(
        rgb_dir, 'USA_{}_{}.csv'.format(city_list[city_id], tile_id))
    line_gt = read_lines_truth(line_file, tower_gt)

    return img, pred_vis_tower, pred_vis_lines, pred_topo_tower, pred_topo_lines, \
           pred_combine_tower, pred_combine_lines, tower_gt, line_gt
コード例 #9
0
ファイル: make_results_cmp.py プロジェクト: bohaohuang/sis
def get_tower_pred(csv_file):
    preds = misc_utils.load_file(csv_file)
    center_list, _, _ = local_maxima_suppression(preds)
    return center_list
コード例 #10
0
ファイル: temp_test_vienna.py プロジェクト: bohaohuang/sis
import os
import numpy as np
from rst_utils import misc_utils, metrics

truth_dir = r'/media/ei-edl01/data/uab_datasets/inria/data/Original_Tiles'
pred_dir = '/home/lab/Documents/bohao/data/temp_results'

model_name = ['CTK', 'CTKA', 'CTK+STN_A']
for mn in model_name:
    iou_a = []
    iou_b = []
    for tile_id in range(1, 6):
        tile_name = 'vienna{}_GT.tif'.format(tile_id)
        gt = misc_utils.load_file(os.path.join(truth_dir, tile_name)) // 255
        pred = misc_utils.load_file(os.path.join(pred_dir, mn, 'inria', 'pred', 'vienna{}.png'.format(tile_id)))

        iou_a_temp, iou_b_temp = metrics.iou_metric(gt, pred, divide_flag=True)
        iou_a.append(iou_a_temp)
        iou_b.append(iou_b_temp)
    print('{} IoU={:.3f}'.format(mn, np.sum(iou_a)/np.sum(iou_b)))
コード例 #11
0
    misc_utils.set_gpu(gpu)

    model = build_model(input_shape, n_filters, class_num)
    optm = Adam(lr)
    lrate = LearningRateScheduler(step_decay)
    model_ckpt = ModelCheckpoint(os.path.join(model_save_path, 'model.hdf5'), monitor='val_loss', verbose=0,
                                 save_best_only=False, save_weights_only=False, mode='auto')
    model.compile(optm, loss='mean_squared_error', metrics=['accuracy', 'binary_crossentropy'])

    feature_file_name = os.path.join(task_dir, 'mlp_tower_pair_ftr_train.npy')
    label_file_name = os.path.join(task_dir, 'mlp_tower_pair_lbl_train.npy')
    feature_file_name_valid = os.path.join(task_dir, 'mlp_tower_pair_ftr_valid.npy')
    label_file_name_valid = os.path.join(task_dir, 'mlp_tower_pair_lbl_valid.npy')

    ftr_train = misc_utils.load_file(feature_file_name)
    ftr_valid = misc_utils.load_file(feature_file_name_valid)
    lbl_train = misc_utils.load_file(label_file_name)
    lbl_train = to_categorical(lbl_train, num_classes=class_num)
    lbl_valid = misc_utils.load_file(label_file_name_valid)
    lbl_valid = to_categorical(lbl_valid, num_classes=class_num)

    history = model.fit(ftr_train, lbl_train, epochs=epochs, batch_size=batch_size,
                        validation_data=(ftr_valid, lbl_valid), callbacks=[lrate, model_ckpt])

    # make plots
    plt.figure(figsize=(12, 5))
    plt.subplot(121)
    plt.plot(history.history['binary_crossentropy'], marker='.')
    plt.plot(history.history['val_binary_crossentropy'], marker='.')
    '''plt.plot(history.history['mean_squared_error'], marker='.')
コード例 #12
0
    for city_id in range(4):
        graph_train, graph_valid = [], []
        centers_train, centers_valid = [], []
        for tile_id in range(1, tile_id_list[city_id] + 1):
            centers = []
            print('Evaluating city {} tile {}'.format(city_id, tile_id))
            save_file_name = os.path.join(
                dirs['task'], '{}_{}_cp.npy'.format(city_list[city_id],
                                                    tile_id))

            # load data
            line_gt, tower_gt = load_data(dirs, city_id, tile_id)

            # get tower connection info
            connected_pair = misc_utils.load_file(save_file_name)

            n_node = len(tower_gt)
            graph = np.zeros((n_node, n_node))
            for cp in connected_pair:
                graph[cp[0], cp[1]] = 1
                graph[cp[1], cp[0]] = 1

            for i in range(n_node):
                centers.append(np.array(tower_gt[i]) / np.array(line_gt.shape))

            if tile_id <= 3:
                graph_valid.append(graph)
                centers_valid.append(centers)
            else:
                graph_train.append(graph)
コード例 #13
0
ファイル: make_line_data_mlp.py プロジェクト: bohaohuang/sis
            print('Processing {}: tile {}'.format(city_list[city_id], tile_id))

            pb = processBlock.ValueComputeProcess(
                '{}{}_fe'.format(city_id, tile_id),
                task_dir,
                os.path.join(task_dir,
                             '{}_{}_feature.npy'.format(city_id, tile_id)),
                func=write_features)
            feature = pb.run(force_run=False,
                             raw_dir=raw_dir,
                             city_list=city_list,
                             city_id=city_id,
                             tile_id=tile_id,
                             model=res50).val
            raw_rgb = misc_utils.load_file(
                os.path.join(
                    raw_dir, 'USA_{}_{}.tif'.format(city_list[city_id],
                                                    tile_id)))
            tile_dim = raw_rgb.shape

            # get tower truth
            gt_list = []
            csv_file_name = os.path.join(
                raw_dir, 'USA_{}_{}.csv'.format(city_list[city_id], tile_id))
            for label, bbox in read_polygon_csv_data(csv_file_name):
                y, x = get_center_point(*bbox)
                gt_list.append([y, x])

            current_cnt = 0
            connected_pair = []
            all_centers = []
            for start, stop, online_points in read_line_csv_data(