コード例 #1
0
ファイル: lattice.py プロジェクト: cctbx/cctbx-playground
 def sum_score_detail(self,reciprocal_space_vectors):
   """Evaluates the probability that the trial value of ( S0_vector | origin_offset ) is correct,
      given the current estimate and the observations.  The trial value comes through the
      reciprocal space vectors, and the current estimate comes through the short list of
      DPS solutions. Actual return value is a sum of NH terms, one for each DPS solution, each ranging
      from -1.0 to 1.0"""
   nh = min ( self.getSolutions().size(), 20) # extended API
   solutions = self.getSolutions() #extended API
   sum_score = 0.0
   for t in xrange(nh):
     #if t!=unique:continue
     dfft = Directional_FFT(angle = solutions[t], xyzdata = reciprocal_space_vectors,
                           granularity = self.granularity, amax = self.amax, # extended API
                           F0_cutoff = 11)
     kval = dfft.kval();
     kmax = dfft.kmax();
     kval_cutoff = self.raw_spot_input.size()/4.0; # deprecate record
     if ( kval > kval_cutoff ):
       ff=dfft.fft_result;
       kbeam = ((-dfft.pmin)/dfft.delta_p) + 0.5;
       Tkmax = cmath.phase(ff[kmax]);
       backmax = math.cos(Tkmax+(2*math.pi*kmax*kbeam/(2*ff.size()-1)) );
       ### Here it should be possible to calculate a gradient.
       ### Then minimize with respect to two coordinates.  Use lbfgs?  Have second derivatives?
       ### can I do something local to model the cosine wave?
       ### direction of wave travel.  Period. phase.
       sum_score += backmax;
     #if t == unique:
     #  print t, kmax, dfft.pmin, dfft.delta_p, Tkmax,(2*math.pi*kmax*kbeam/(2*ff.size()-1))
   return sum_score
コード例 #2
0
ファイル: lattice.py プロジェクト: rimmartin/cctbx_project
 def sum_score_detail(self,reciprocal_space_vectors):
   """Evaluates the probability that the trial value of ( S0_vector | origin_offset ) is correct,
      given the current estimate and the observations.  The trial value comes through the
      reciprocal space vectors, and the current estimate comes through the short list of
      DPS solutions. Actual return value is a sum of NH terms, one for each DPS solution, each ranging
      from -1.0 to 1.0"""
   nh = min ( self.getSolutions().size(), 20) # extended API
   solutions = self.getSolutions() #extended API
   sum_score = 0.0
   for t in range(nh):
     #if t!=unique:continue
     dfft = Directional_FFT(angle = solutions[t], xyzdata = reciprocal_space_vectors,
                           granularity = self.granularity, amax = self.amax, # extended API
                           F0_cutoff = 11)
     kval = dfft.kval();
     kmax = dfft.kmax();
     kval_cutoff = self.raw_spot_input.size()/4.0; # deprecate record
     if ( kval > kval_cutoff ):
       ff=dfft.fft_result;
       kbeam = ((-dfft.pmin)/dfft.delta_p) + 0.5;
       Tkmax = cmath.phase(ff[kmax]);
       backmax = math.cos(Tkmax+(2*math.pi*kmax*kbeam/(2*ff.size()-1)) );
       ### Here it should be possible to calculate a gradient.
       ### Then minimize with respect to two coordinates.  Use lbfgs?  Have second derivatives?
       ### can I do something local to model the cosine wave?
       ### direction of wave travel.  Period. phase.
       sum_score += backmax;
     #if t == unique:
     #  print t, kmax, dfft.pmin, dfft.delta_p, Tkmax,(2*math.pi*kmax*kbeam/(2*ff.size()-1))
   return sum_score
コード例 #3
0
def _sum_score_detail(reciprocal_space_vectors, solutions, granularity=None, amax=None):
    """Evaluates the probability that the trial value of (S0_vector | origin_offset) is correct,
    given the current estimate and the observations.  The trial value comes through the
    reciprocal space vectors, and the current estimate comes through the short list of
    DPS solutions. Actual return value is a sum of NH terms, one for each DPS solution, each ranging
    from -1.0 to 1.0"""

    nh = min(solutions.size(), 20)  # extended API
    sum_score = 0.0
    for t in range(nh):
        dfft = Directional_FFT(
            angle=Direction(solutions[t]),
            xyzdata=reciprocal_space_vectors,
            granularity=5.0,
            amax=amax,  # extended API XXX These values have to come from somewhere!
            F0_cutoff=11,
        )
        kval = dfft.kval()
        kmax = dfft.kmax()
        kval_cutoff = reciprocal_space_vectors.size() / 4.0
        if kval > kval_cutoff:
            ff = dfft.fft_result
            kbeam = ((-dfft.pmin) / dfft.delta_p) + 0.5
            Tkmax = cmath.phase(ff[kmax])
            backmax = math.cos(
                Tkmax + (2 * math.pi * kmax * kbeam / (2 * ff.size() - 1))
            )
            ### Here it should be possible to calculate a gradient.
            ### Then minimize with respect to two coordinates.  Use lbfgs?  Have second derivatives?
            ### can I do something local to model the cosine wave?
            ### direction of wave travel.  Period. phase.
            sum_score += backmax
    return sum_score