コード例 #1
0
def jacobian_matrix(grid):
    """
    Jacobian matrix at all points

    Parameters
    ----------
    grid : ndarray
        Input grid.
        eg. if 3 dimensional ((dimension, len(x), len(y), len(z)))

    Returns
    -------
    J : ndarray
        Jacobian matrix.
        eg. 3d case (dimension, dimension, len(x), len(y), len(z))
    """
    dimension = grid.ndim - 1

    if dimension == 2:
        return np.array([gradient(grid[0]), gradient(grid[1])])
    elif dimension == 3:
        return np.array(
            [gradient(grid[0]), gradient(grid[1]), gradient(grid[2])])
コード例 #2
0
ファイル: derivatives.py プロジェクト: Ayagoz/optimization
def get_derivative_template(reg, epsilon, params_der, window, T, n_jobs):
    # get I composed with phi
    # print moving_imgs.data[-1].shape, template_img.shape

    moving = copy.deepcopy(reg.moving)
    warp_fixed = np.copy(
        moving.apply_transform(
            Deformation(grid=reg.deformation.forward_mappings[-1]),
            order=3).data)

    # plt.imshow(warp_fixed.data)
    # plt.title('in dJ')
    # plt.show()

    dl_dv = -2. / reg.similarity.variance * gradient(
        warp_fixed) * reg.deformation.forward_dets[-1]

    # (t=1, ndim, img_shape)-for v and (img_shape,)- for template img J

    dl_dJ_dv = double_dev_J_v(dl_dv)

    params_grad = {
        'reg': copy.deepcopy(reg),
        'epsilon': epsilon,
        'deformation': copy.deepcopy(reg.old_deformation)
    }

    loss = loss_func(reg=copy.deepcopy(reg),
                     deformation=copy.deepcopy(reg.deformation))

    dv_dJ = sparse_dot_product_forward(vector=np.copy(
        reg.resulting_vector_fields[-1].vector_fields),
                                       ndim=len(reg.fixed.shape),
                                       loss=loss,
                                       T=T,
                                       mat_shape=reg.fixed.shape,
                                       window=window,
                                       params_grad=params_grad,
                                       param_der=params_der,
                                       n_jobs=n_jobs).dot(dl_dJ_dv)
    # del dl_dv, dl_dJ_dv

    # gc.collect()

    return [-dv_dJ]
コード例 #3
0
ファイル: gncc.py プロジェクト: Ryo-Ito/image_registration
    def derivative(self, J, I):
        Im = gaussian_filter(I, self.sigma, mode="constant")
        Jm = gaussian_filter(J, self.sigma, mode="constant")

        Ibar = I - Im
        Jbar = J - Jm

        II = gaussian_filter(I * I, self.sigma, mode="constant") - Im * Im
        JJ = gaussian_filter(J * J, self.sigma, mode="constant") - Jm * Jm
        IJ = gaussian_filter(I * J, self.sigma, mode="constant") - Im * Jm

        denom = II * JJ
        IJoverIIJJ = IJ / denom
        IJoverII = IJ / II
        IJoverIIJJ[np.where(denom < 1e-3)] = 0
        IJoverII[np.where(II < 1e-3)] = 0

        return (2 * gradient(Ibar) * IJoverIIJJ
                * (Jbar - Ibar * IJoverII) / self.variance)
コード例 #4
0
    def derivative(self, J, I):
        Im = gaussian_filter(I, self.sigma, mode="constant")
        Jm = gaussian_filter(J, self.sigma, mode="constant")

        Ibar = I - Im
        Jbar = J - Jm

        II = gaussian_filter(I * I, self.sigma, mode="constant") - Im * Im
        JJ = gaussian_filter(J * J, self.sigma, mode="constant") - Jm * Jm
        IJ = gaussian_filter(I * J, self.sigma, mode="constant") - Im * Jm

        denom = II * JJ
        IJoverIIJJ = IJ / denom
        IJoverII = IJ / II
        IJoverIIJJ[np.where(denom < 1e-3)] = 0
        IJoverII[np.where(II < 1e-3)] = 0

        return (2 * gradient(Ibar) * IJoverIIJJ * (Jbar - Ibar * IJoverII) /
                self.variance)
コード例 #5
0
    def derivative(self, J, I):
        """
        derivative of cost function of mahalanobis normalized cross correlation

        Parameters
        ----------
        J : ndarray
            Input deformed fixed image.
            eg. 3 dimensional case (len(x), len(y), len(z))
        I : ndarray
            Input deformed moving image.
        matrix : ndarray
            metric matrix

        Returns
        -------
        momentum : ndarray
            Unsmoothed vector field
        """
        assert (I.dtype == np.float)
        assert (J.dtype == np.float)
        Ai = sliding_matmul(I, self.matrix)
        Aj = sliding_matmul(J, self.matrix)
        Ibar = np.copy(Ai[..., self.index]).astype(np.float)
        Jbar = np.copy(Aj[..., self.index]).astype(np.float)

        II = np.einsum('...i,...i->...', Ai, Ai)
        JJ = np.einsum('...i,...i->...', Aj, Aj)
        IJ = np.einsum('...i,...i->...', Ai, Aj)
        IIJJ = II * JJ
        IJoverIIJJ = IJ / IIJJ
        IJoverII = IJ / II
        IJoverIIJJ[np.where(IIJJ < 1e-3)] = 0
        IJoverII[np.where(II < 1e-3)] = 0

        return (2 * gradient(Ibar) * IJoverIIJJ * (Jbar - Ibar * IJoverII) /
                self.variance)
コード例 #6
0
ファイル: mncc.py プロジェクト: Ryo-Ito/image_registration
    def derivative(self, J, I):
        """
        derivative of cost function of mahalanobis normalized cross correlation

        Parameters
        ----------
        J : ndarray
            Input deformed fixed image.
            eg. 3 dimensional case (len(x), len(y), len(z))
        I : ndarray
            Input deformed moving image.
        matrix : ndarray
            metric matrix

        Returns
        -------
        momentum : ndarray
            Unsmoothed vector field
        """
        assert I.dtype == np.float
        assert J.dtype == np.float
        Ai = sliding_matmul(I, self.matrix)
        Aj = sliding_matmul(J, self.matrix)
        Ibar = np.copy(Ai[..., self.index]).astype(np.float)
        Jbar = np.copy(Aj[..., self.index]).astype(np.float)

        II = np.einsum("...i,...i->...", Ai, Ai)
        JJ = np.einsum("...i,...i->...", Aj, Aj)
        IJ = np.einsum("...i,...i->...", Ai, Aj)
        IIJJ = II * JJ
        IJoverIIJJ = IJ / IIJJ
        IJoverII = IJ / II
        IJoverIIJJ[np.where(IIJJ < 1e-3)] = 0
        IJoverII[np.where(II < 1e-3)] = 0

        return 2 * gradient(Ibar) * IJoverIIJJ * (Jbar - Ibar * IJoverII) / self.variance
コード例 #7
0
    def derivative(self, J, I):
        """
        derivative of cost function of zero means normalized cross correlation

        Parameters
        ----------
        J : ndarray
            Input deformed fixed images.
            eg. 3 dimensional case (len(x), len(y), len(z))
        I : ndarray
            Input deformed moving images.

        Returns
        -------
        momentum : ndarray
            momentum field.
            eg. 3d case (dimension, len(x), len(y), len(z))
        """
        Im = uniform_filter(I, self.window_length)
        Jm = uniform_filter(J, self.window_length)

        Ibar = I - Im
        Jbar = J - Jm

        II = uniform_filter(I * I, self.window_length) - Im * Im
        JJ = uniform_filter(J * J, self.window_length) - Jm * Jm
        IJ = uniform_filter(I * J, self.window_length) - Im * Jm

        denom = II * JJ
        IJoverIIJJ = IJ / denom
        IJoverII = IJ / II
        IJoverIIJJ[np.where(denom < 1e-3)] = 0
        IJoverII[np.where(II < 1e-3)] = 0

        return (2 * gradient(Ibar) * IJoverIIJJ
                * (Jbar - Ibar * IJoverII) / self.variance)
コード例 #8
0
 def derivative(self, fixed, moving):
     return 2 * gradient(moving) * (fixed - moving) / self.variance