STACK_METHOD = 'sum' # Choose either 'sum', 'product', or 'semblance' TIME_METHOD = 'celerity' # Choose either 'celerity' or 'fdtd' CELERITY = 320 # [m/s] S = grid_search(processed_st=st_proc, grid=grid, time_method=TIME_METHOD, starttime=STARTTIME, endtime=ENDTIME, stack_method=STACK_METHOD, celerity=CELERITY) #%% (4) Plot from rtm import plot_time_slice, plot_record_section, get_peak_coordinates fig_slice = plot_time_slice(S, st_proc, label_stations=False, hires=False, plot_peak=True) time_max, y_max, x_max, _, _ = get_peak_coordinates(S, unproject=S.UTM) fig = plot_record_section(st_proc, origin_time=time_max, source_location=(y_max, x_max), plot_celerity='range', label_waveforms=False) fig.axes[0].set_ylim(bottom=1100) # Start at this distance (km) from source
from rtm import (plot_time_slice, plot_record_section, get_peak_coordinates, plot_st) import numpy as np fig_st = plot_st(st, filt=[FREQ_MIN, FREQ_MAX], equal_scale=False, remove_response=True, label_waveforms=True) fig_slice = plot_time_slice(S, st_proc, label_stations=True, dem=dem, plot_peak=True) time_max, y_max, x_max, peaks, props = get_peak_coordinates(S, global_max=False, height=3, min_time=2, unproject=S.UTM) peak_ind = np.argmax(props['peak_heights']) fig = plot_record_section(st_proc, origin_time=time_max[peak_ind], source_location=(y_max[peak_ind], x_max[peak_ind]), plot_celerity=S.celerity, label_waveforms=True)