コード例 #1
0
    def charge_time(self, step = [0,30,60,120,180,240,300,360,420,480,540,600,660,720,780,840,900,1500]):
        [_, time_d, time_d_c, mode, _, _, _]=self.charge_ana()

        freq = hist_func_np.hist_con(time_d,step)
        re1=pd.DataFrame(freq[1])
        
        re1.index=freq[0]
        re1.columns=['频数']
        re2 =  hist_func_np.box_hist(time_d,'充电时长[min]')

        freq = hist_func_np.hist_con(time_d_c,step)
        re3=pd.DataFrame(freq[1])
        
        re3.index=freq[0]
        re3.columns=['频数']
        re4 = hist_func_np.box_hist(time_d_c,'折算满充时长[min]')

        [a, b, c] = hist_func_np.hist_con_dis( time_d_c, step, mode,['mode2','mode3_2','mode3_1','DC'],show_hist=1)
        re5=pd.DataFrame(np.array(b).T)
        re5.index=a
        re5.columns=['mode2','mode3_2','mode3_1','DC']
        re6=pd.DataFrame(np.array(c).T)
        re6.index = ['min','1%percentile','25%percentile','50%percentile','75%percentile','99%percentile','max','mean']
        re6.columns = ['mode2','mode3_2','mode3_1','DC']

        print(re1, re2, re3, re4, re5, re6)

        return re1, re2, re3, re4, re5, re6
コード例 #2
0
    def v_mode(self,step=[0,10,20,30,40,50,60,70,80,90,100,110,120,200],sampling=1/6):
        sql="SELECT cast(vehiclespeed,'Float32'), operationmode FROM "+ self.tb1 + self.con+  \
            " AND cast(vehiclespeed,'Float32')>0 AND toSecond(uploadtime)<"+str(int(sampling*60))
        print(sql)
        aus=pd.DataFrame(client.execute(sql))
        v=np.array(aus[0])
        mode=np.array(aus[1])

        freq = hist_func_np.hist_con(v,step)
        re1 = pd.DataFrame(freq[1])
        re1.index=freq[0]
        re1.columns=['频数']
        re2 =  hist_func_np.box_hist(v,'车速[km/h]')
        
        if self.pro_typ=="PHEV":
            [a,b,c] = hist_func_np.hist_con_dis(v,step,mode,['EV','PHEV',"FV"],show_hist=1)
            re3=pd.DataFrame(np.array(b).T)
            re3.index=a
            re3.columns=['EV','PHEV',"FV"]
            print(re3)
            re4=pd.DataFrame(np.array(c).T)
            re4.index=['min','1%percentile','25%percentile','50%percentile','75%percentile','99%percentile','max','mean']
            re4.columns=['EV','PHEV',"FV"]
            print(re4)
            return re1,re2, re3, re4
        else:
            return re1,re2
コード例 #3
0
    def charge_start_time(self,step = range(25)):
        [time_h_s, _, _, _, _, _, _]=self.charge_ana()
        freq = hist_func_np.hist_con(time_h_s,step)
        re1=pd.DataFrame(freq[1])
        re1.index=["0",'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21' ,'22', '23']
        re1.columns=['频数']
        print(re1)

        return re1
コード例 #4
0
    def charge_soc(self,step=range(0,120,10)):
        [_, _, _, _,charg_soc, _, _] = self.charge_ana()
        soc_s = charg_soc[0]
        soc_e = charg_soc[1]

        freq = hist_func_np.hist_con(soc_s,step)
        re1=pd.DataFrame(freq[1])
        freq[0][-1]='100'
        re1.index=freq[0]
        re1.columns=['频数']
        re2 =  hist_func_np.box_hist(soc_s,'充电开始SOC[%]')

        freq = hist_func_np.hist_con(soc_e,step)
        re3=pd.DataFrame(freq[1])
        freq[0][-1]='100'
        re3.index=freq[0]
        re3.columns=['频数']
        re4 =  hist_func_np.box_hist(soc_e,'充电结束SOC[%]')

        print(re1, re2, re3, re4)

        return re1, re2, re3, re4
コード例 #5
0
    def E_motor_temp(self,step=range(-10,120,5),sampling=1/6):
        sql="SELECT cast(emctltemp,'Int32'), cast(emtemp,'Int32') FROM "+self.tb1 + self.con + \
            " AND emstat in ('CONSUMING_POWER','GENERATING_POWER' ) AND toSecond(uploadtime)<"+str(int(sampling*60))
        aus=pd.DataFrame(client.execute(sql))
        temp_motor=np.array(aus[1])
        temp_LE=np.array(aus[0])


        freq = hist_func_np.hist_con(temp_motor,step)
        re3=pd.DataFrame(freq[1])
        re3.index=freq[0]
        re3.columns=['频数']
        re4 = hist_func_np.box_hist(temp_motor,'电机温度[℃]')
        

        freq = hist_func_np.hist_con(temp_LE,step)
        re1=pd.DataFrame(freq[1])
        re1.index=freq[0]
        re1.columns=['频数']
        re2 = hist_func_np.box_hist(temp_LE,'LE温度[℃]')

        return re1,re2,re3,re4
コード例 #6
0
    def daily_mileage(self,step=range(0,500,20)):
        sql="WITH cast(accmiles,'Float32') AS mile " \
            "SELECT max(mile)-min(mile) FROM " + self.tb1 + self.con+ \
            " GROUP BY deviceid,toDate(uploadtime) "
        aus=pd.DataFrame(client.execute(sql))
        mile=np.array(aus[0])

        freq = hist_func_np.hist_con(mile,step)
        re1=pd.DataFrame(freq[1])
        re1.index=freq[0]
        re1.columns=['频数']
        re2 =  hist_func_np.box_hist(mile,'每日行驶里程[km]')

        return re1,re2
コード例 #7
0
    def E_motor_workingPoint(self,sampling=1/6):
        sql="WITH cast(emvolt,'Float32') * cast(emctlcut,'Float32')/1000 as el_pow " \
            "SELECT cast(emspeed, 'Float32') as sp, cast(emtq,'Float32') as tq, " \
            " multiIf(sp*tq*el_pow==0,0,emstat=='CONSUMING_POWER',sp*tq/9550/el_pow,emstat=='GENERATING_POWER',el_pow/sp/tq*9550,100) " \
            " FROM "+self.tb1 + self.con + " AND emstat in ('CONSUMING_POWER','GENERATING_POWER' ) AND toSecond(uploadtime)<"+str(int(sampling*60))
        aus=client.execute(sql)
        speed,torq,eff=[],[],[]
        for value in aus:
            if value[0]!=0 and value[1]!=0:
                speed.append(value[0])
                torq.append(value[1])
                if value[2]>0 and value[2]<1:
                    eff.append(value[2]*100)
        l1=len(aus)
        l2=len(speed)
        l3=len(eff)
        print("-------E-Motor Working Point Analysis---------\r\n")
        print("原始抓取点数:"+str(l1)+"\r\n")
        print("去除转矩为零或转速为零之后工作点数:"+str(l2)+"   占比:"+str(round(l2/l1*100,2))+"%\r\n")
        print("效率值在合理范围数:"+str(l3)+"   占比:"+str(round(l3/l2*100,2))+"%\r\n")

        speed,torq,eff=np.array(speed),np.array(torq),np.array(eff)

        freq = hist_func_np.hist_con(eff,[0,20,40,50,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100])
        re1=pd.DataFrame(freq[1])
        re1.index=freq[0]
        re1.columns=['频数']
        re2 = hist_func_np.box_hist(eff,'电机工作效率[%]')
        

        [a,b,c] = hist_func_np.hist_cros_2con(speed, range(-4000,13000,500), torq, range(-300,400,50))
        
        re3=pd.DataFrame(c)
        
        re3.index=b
        re3.columns=a
        re3.to_csv('emotor.csv')
        re4 = hist_func_np.box_hist(speed,'电机转速[rpm]')
        re5 = hist_func_np.box_hist(torq,'电机转矩[Nm]')
        return re1, re2, re3, re4, re5
コード例 #8
0
def Meb_mileage(date_range):
    a = date_range[0] + " 00:00:00"
    b = date_range[1] + " 23:59:59"

    sql="SELECT deviceid, uploadtime, charg_s_c, socp, d_soc, acc  FROM( " \
        "SELECT deviceid, uploadtime, runningDifference(charg_s) as charg_s_c, socp, runningDifference(socp) as d_soc, cast(accmiles,'Float32') as acc " \
        "FROM ( "\
        "SELECT deviceid, uploadtime, if(chargingstatus=='NO_CHARGING',0,1) AS charg_s, " \
        "accmiles, if(soc<0,0,soc) AS socp " \
        "FROM ods.rtm_details_v2 " \
        "WHERE deviceid like 'LSVUB%' AND uploadtime BETWEEN '"+a+"' AND '"+b+"' " \
        "ORDER BY deviceid, uploadtime ) ORDER BY deviceid,uploadtime ) " \
        "where charg_s_c IN (1,-1)  ORDER BY deviceid,uploadtime "
    aus = client.execute(sql)
    #aus=[0 vin  1 时间  2充电变化标志位  3 soc   4 d_soc  5 mileage ]
    df = pd.DataFrame(aus)
    #df.to_csv('new.csv')
    all_drive = []
    count_1 = 0  #基数多少次行驶前数据丢失
    count_2 = 0  #计数行驶后数据丢失
    count_12 = 0  #行驶前,行驶后均数据丢失
    i = 1
    while i < len(aus):
        if aus[i][0] == aus[i - 1][0] and aus[
                i - 1][2] == -1 and aus[i][2] == 1:  #i-1时刻是开始行驶,i是结束行驶时刻
            start_d_soc = abs(aus[i - 1][4])
            end_d_soc = abs(aus[i][4])
            if start_d_soc > 5 or end_d_soc > 5:
                if start_d_soc > 5:
                    count_1 += 1
                if end_d_soc > 5:
                    count_2 += 1
                if start_d_soc > 5 and end_d_soc > 5:
                    count_12 += 1
            elif aus[i - 1][3] > aus[i][3] and aus[
                    i - 1][5] < aus[i][5]:  # 行驶过程中SOC减少,里程增加
                all_drive.append([
                    aus[i][0], aus[i - 1][1], aus[i][1], aus[i - 1][3],
                    aus[i][3], aus[i - 1][5], aus[i][5]
                ])
                #all_drive=[0vin,1time_start,2time_end,3soc_start,4soc_end,5mile_start,6mile_end]
            i += 2
        else:
            i += 1
    l1 = len(all_drive) + count_1 + count_2 - count_12

    soc_r = []
    mile_r = []
    mile_r_c = []
    Energy_consump = []

    for i, a in enumerate(all_drive):
        soc_r.append(a[3] - a[4])
        mile_r.append(a[6] - a[5])

    l2 = len(all_drive)
    print("------mile perCharging analysis---------\r\n")
    print("原始行驶次数:" + str(l1) + "\r\n")
    print("充电前数据丢失次数:" + str(count_1) + "占比:" +
          str(round(count_1 / l1 * 100, 2)) + "%\r\n")
    print("充电后数据丢失次数:" + str(count_2) + "占比:" +
          str(round(count_2 / l1 * 100, 2)) + "%\r\n")
    print("充电前后数据均丢失次数:" + str(count_12) + "占比:" +
          str(round(count_12 / l1 * 100, 2)) + "%\r\n")
    print("处理后行驶次数:" + str(l2) + "\r\n")

    mile_r = np.array(mile_r)

    freq = hist_func_np.hist_con(mile_r, range(0, 800, 50))
    re1 = pd.DataFrame(freq[1])
    re1.index = freq[0]
    re1.columns = ['频数']
    re2 = hist_func_np.box_hist(mile_r, '每次充电间隔里程[km]')

    charging_energy = 82  #ID4x 82kWh 冲入电量88kWh,来源CLTC充电测试平均值

    for a in all_drive:
        #all_drive=[0vin,1time_start,2time_end,3soc_start,4soc_end,5mile_start,6mile_end]
        if (a[6] - a[5]) > 10 and (a[3] - a[4]) > 5:
            Energy_consump.append(charging_energy * (a[3] - a[4]) /
                                  (a[6] - a[5]))
            mile_r_c.append((a[6] - a[5]) / (a[3] - a[4]) * 100)

    mile_r_c = np.array(mile_r_c)
    Energy_consump = np.array(Energy_consump)

    freq = hist_func_np.hist_con(mile_r_c, range(0, 800, 50))
    re3 = pd.DataFrame(freq[1])
    re3.index = freq[0]
    re3.columns = ['频数']
    re4 = hist_func_np.box_hist(mile_r_c, '折算纯电续驶里程[km]')

    freq = hist_func_np.hist_con(Energy_consump,
                                 [0, 13, 14, 15, 16, 17, 18, 19, 20, 50])
    re5 = pd.DataFrame(freq[1])
    re5.index = freq[0]
    re5.columns = ['频数']
    re6 = hist_func_np.box_hist(Energy_consump, '折算电耗[kWh/100km]')

    return re1, re2, re3, re4, re5, re6
コード例 #9
0
    def percharge_mile(self, step=range(0,500,20)):
        sql="SELECT deviceid, uploadtime, charg_s_c, socp, d_soc, acc  FROM( " \
            "SELECT deviceid, uploadtime, runningDifference(charg_s) as charg_s_c, socp, runningDifference(socp) as d_soc, cast(accmiles,'Float32') as acc " \
            "FROM (SELECT deviceid, uploadtime, if(chargingstatus=='NO_CHARGING',0,1) AS charg_s, accmiles, if(soc<0,0,soc) AS socp " \
            "FROM " + self.tb1 + self.con+ " ORDER BY deviceid, uploadtime ) ORDER BY deviceid,uploadtime ) " \
            "where charg_s_c IN (1,-1)  ORDER BY deviceid,uploadtime "
        aus=client.execute(sql)
        #aus=[0 vin  1 时间  2充电变化标志位  3 soc   4 d_soc  5 mileage ]
        df=pd.DataFrame(aus)
        #df.to_csv('new.csv')
        all_drive=[]
        count_1=0#基数多少次行驶前数据丢失
        count_2=0#计数行驶后数据丢失
        count_12=0#行驶前,行驶后均数据丢失
        i=1
        while i<len(aus):
            if aus[i][0]==aus[i-1][0] and aus[i-1][2]==-1 and aus[i][2]==1:#i-1时刻是开始行驶,i是结束行驶时刻
                start_d_soc=abs(aus[i-1][4])
                end_d_soc=abs(aus[i][4])
                if start_d_soc>5 or end_d_soc>5:
                    if start_d_soc>5:
                        count_1+=1
                    if end_d_soc>5:
                        count_2+=1
                    if start_d_soc>5 and end_d_soc>5:
                        count_12+=1
                elif aus[i-1][3]>aus[i][3] and aus[i-1][5]<aus[i][5]:# 行驶过程中SOC减少,里程增加
                    all_drive.append([aus[i][0],aus[i-1][1],aus[i][1],aus[i-1][3],aus[i][3],aus[i-1][5],aus[i][5]])
                    #all_drive=[0vin,1time_start,2time_end,3soc_start,4soc_end,5mile_start,6mile_end]
                i+=2
            else:
                i+=1
        l1=len(all_drive)+count_1+count_2-count_12

        
        soc_r=[]
        mile_r=[]
        mile_r_c=[]
        Energy_consump=[]

        for i,a in enumerate(all_drive):
            soc_r.append(a[3]-a[4])
            mile_r.append(a[6]-a[5])

        l2=len(mile_r_c)
        print("------mile perCharging analysis---------\r\n")
        print("原始行驶次数:"+str(l1)+"\r\n")
        print("充电前数据丢失次数:"+str(count_1)+"占比:"+str(round(count_1/l1*100,2))+"%\r\n")
        print("充电后数据丢失次数:"+str(count_2)+"占比:"+str(round(count_2/l1*100,2))+"%\r\n")
        print("充电前后数据均丢失次数:"+str(count_12)+"占比:"+str(round(count_12/l1*100,2))+"%\r\n")
        print("处理后行驶次数:"+str(l2)+"\r\n")

        mile_r=np.array(mile_r)
        

        freq = hist_func_np.hist_con(mile_r,step)
        re1=pd.DataFrame(freq[1])
        re1.index=freq[0]
        re1.columns=['频数']
        re2 =  hist_func_np.box_hist(mile_r,'每次充电间隔里程[km]')
        

        if self.pro_typ=='BEV':
            charging_energy=37 #lavida BEV 实际SOC96~8% 冲入电量37kWh,来源NEDC充电测试平均值
                
            for a in all_drive:
                if (a[6]-a[5])>10 and (a[3]-a[4])>5:
                    Energy_consump.append(charging_energy*(a[3]-a[4])/(a[6]-a[5]))
                    mile_r_c.append((a[6]-a[5])/(a[3]-a[4])*100)

            mile_r_c=np.array(mile_r_c)
            Energy_consump = np.array(Energy_consump)

            freq = hist_func_np.hist_con(mile_r_c,step)
            re3 = pd.DataFrame(freq[1])
            re3.index = freq[0]
            re3.columns = ['频数']
            re4 = hist_func_np.box_hist(mile_r_c,'折算纯电续驶里程[km]')
            
            
            freq = hist_func_np.hist_con(Energy_consump,np.arange(6,30,0.5))
            re5=pd.DataFrame(freq[1])
            re5.index=freq[0]
            re5.columns=['频数']
            re6 = hist_func_np.box_hist(Energy_consump,'折算电耗[kWh/100km]')

            return re1, re2, re3, re4, re5, re6
        else:
            return re1,re2