def forward(self, anchor, positive, negative):
        distance_pos = self.distance_metric(anchor, positive)
        distance_neg = self.distance_metric(anchor, negative)

        losses = torch.nn.functional.relu(distance_pos - distance_neg + self.triplet_margin)
        logger.info('pos_distance: %s; neg_distance: %s; diff: %s' %(str(distance_pos), str(distance_neg), str(distance_pos - distance_neg)))
        return losses.mean(), distance_pos, distance_neg
コード例 #2
0
def train_and_test(data_dir,
                   bert_model="bert-base-uncased",
                   task_name=None,
                   output_dir=None,
                   max_seq_length=128,
                   do_train=False,
                   do_eval=False,
                   do_lower_case=False,
                   train_batch_size=24,
                   eval_batch_size=8,
                   learning_rate=2e-5,
                   num_train_epochs=25,
                   warmup_proportion=0.1,
                   no_cuda=False,
                   local_rank=-1,
                   seed=42,
                   gradient_accumulation_steps=1,
                   optimize_on_cpu=False,
                   fp16=False,
                   loss_scale=128,
                   saved_model=""):

    # ## Required parameters
    # parser.add_argument("--data_dir",
    #                     default=None,
    #                     type=str,
    #                     required=True,
    #                     help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    # parser.add_argument("--bert_model", default=None, type=str, required=True,
    #                     help="Bert pre-trained model selected in the list: bert-base-uncased, "
    #                          "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    # parser.add_argument("--task_name",
    #                     default=None,
    #                     type=str,
    #                     required=True,
    #                     help="The name of the task to train.")
    # parser.add_argument("--output_dir",
    #                     default=None,
    #                     type=str,
    #                     required=True,
    #                     help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    # parser.add_argument("--max_seq_length",
    #                     default=128,
    #                     type=int,
    #                     help="The maximum total input sequence length after WordPiece tokenization. \n"
    #                          "Sequences longer than this will be truncated, and sequences shorter \n"
    #                          "than this will be padded.")
    # parser.add_argument("--do_train",
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to run training.")
    # parser.add_argument("--do_eval",
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to run eval on the dev set.")
    # parser.add_argument("--do_lower_case",
    #                     default=False,
    #                     action='store_true',
    #                     help="Set this flag if you are using an uncased model.")
    # parser.add_argument("--train_batch_size",
    #                     default=32,
    #                     type=int,
    #                     help="Total batch size for training.")
    # parser.add_argument("--eval_batch_size",
    #                     default=8,
    #                     type=int,
    #                     help="Total batch size for eval.")
    # parser.add_argument("--learning_rate",
    #                     default=5e-5,
    #                     type=float,
    #                     help="The initial learning rate for Adam.")
    # parser.add_argument("--num_train_epochs",
    #                     default=3.0,
    #                     type=float,
    #                     help="Total number of training epochs to perform.")
    # parser.add_argument("--warmup_proportion",
    #                     default=0.1,
    #                     type=float,
    #                     help="Proportion of training to perform linear learning rate warmup for. "
    #                          "E.g., 0.1 = 10%% of training.")
    # parser.add_argument("--no_cuda",
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether not to use CUDA when available")
    # parser.add_argument("--local_rank",
    #                     type=int,
    #                     default=-1,
    #                     help="local_rank for distributed training on gpus")
    # parser.add_argument('--seed',
    #                     type=int,
    #                     default=42,
    #                     help="random seed for initialization")
    # parser.add_argument('--gradient_accumulation_steps',
    #                     type=int,
    #                     default=1,
    #                     help="Number of updates steps to accumulate before performing a backward/update pass.")
    # parser.add_argument('--optimize_on_cpu',
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to perform optimization and keep the optimizer averages on CPU")
    # parser.add_argument('--fp16',
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to use 16-bit float precision instead of 32-bit")
    # parser.add_argument('--loss_scale',
    #                     type=float, default=128,
    #                     help='Loss scaling, positive power of 2 values can improve fp16 convergence.')

    # args = parser.parse_args()

    processors = {
        #         "cola": ColaProcessor,
        #         "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "stance": StanceProcessor
    }

    if local_rank == -1 or no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
        if fp16:
            logger.info(
                "16-bits training currently not supported in distributed training"
            )
            fp16 = False  # (see https://github.com/pytorch/pytorch/pull/13496)
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(local_rank != -1))

    if gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(gradient_accumulation_steps))

    train_batch_size = int(train_batch_size / gradient_accumulation_steps)

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(seed)

    if not do_train and not do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if do_train:
        #         if os.path.exists(output_dir) and os.listdir(output_dir):
        #             raise ValueError("Output directory ({}) already exists and is not empty.".format(output_dir))
        os.makedirs(output_dir, exist_ok=True)

    task_name = task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()

    #     tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=do_lower_case)
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

    train_examples = None
    num_train_steps = None
    if do_train:
        train_examples = processor.get_train_examples(data_dir)

        num_train_steps = int(
            len(train_examples) / train_batch_size /
            gradient_accumulation_steps * num_train_epochs)

        # Prepare model
        #     model = BertForSequenceClassification.from_pretrained(bert_model,
        #                 cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(local_rank), num_labels = 2)

        model = BertForConsistencyCueClassification.from_pretrained(
            'bert-base-uncased', num_labels=2)
        model.to(device)

        if fp16:
            model.half()

        if local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[local_rank], output_device=local_rank)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Prepare optimizer
        if fp16:
            param_optimizer = [
                (n, param.clone().detach().to('cpu').float().requires_grad_())
                for n, param in model.named_parameters()
            ]
        elif optimize_on_cpu:
            param_optimizer = [
                (n, param.clone().detach().to('cpu').requires_grad_())
                for n, param in model.named_parameters()
            ]
        else:
            param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay_rate':
            0.0
        }]
        t_total = num_train_steps
#     print(t_total)
    if local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if do_train:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=learning_rate,
                             warmup=warmup_proportion,
                             t_total=t_total)

    global_step = 0
    if do_train:
        claim_features = convert_claims_to_features(train_examples, label_list,
                                                    max_seq_length, tokenizer)
        train_features = convert_pers_to_features(train_examples, label_list,
                                                  max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        claims_input_ids = torch.tensor([f.input_ids for f in claim_features],
                                        dtype=torch.long)
        claims_input_mask = torch.tensor(
            [f.input_mask for f in claim_features], dtype=torch.long)
        claims_segment_ids = torch.tensor(
            [f.segment_ids for f in claim_features], dtype=torch.long)
        claims_label_ids = torch.tensor([f.label_id for f in claim_features],
                                        dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids,
                                   claims_input_ids, claims_input_mask,
                                   claims_segment_ids, claims_label_ids)

        if local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=train_batch_size)

        model.train()
        for _ in trange(int(num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            process_bar = tqdm(train_dataloader)
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids, claim_input_ids, claim_input_mask, claim_segment_ids, claim_label_ids = batch

                out_results = model(input_ids=input_ids,
                                    token_type_ids=segment_ids,
                                    attention_mask=input_mask,
                                    labels=label_ids,
                                    input_ids2=claim_input_ids,
                                    token_type_ids2=claim_segment_ids,
                                    attention_mask2=claim_input_mask,
                                    labels2=claim_label_ids)
                #                 loss = model(input_ids, segment_ids, input_mask, label_ids)
                #                 print("out_results:")
                #                 print(out_results)
                loss = out_results

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if fp16 and loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * loss_scale
                if gradient_accumulation_steps > 1:
                    loss = loss / gradient_accumulation_steps
                process_bar.set_description("Loss: %0.8f" %
                                            (loss.sum().item()))
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % gradient_accumulation_steps == 0:
                    if fp16 or optimize_on_cpu:
                        if fp16 and loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / loss_scale
                        is_nan = set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            loss_scale = loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()
                    global_step += 1
            print("\nLoss: {}\n".format(tr_loss / nb_tr_steps))
        torch.save(model.state_dict(),
                   output_dir + "new_neg_bert_sia_cos_bs24_lr2e_5_epoch25.pth")

    if do_eval and (local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_test_examples(data_dir)
        #         eval_examples = processor.get_dev_examples(data_dir)
        claim_features = convert_claims_to_features(eval_examples, label_list,
                                                    max_seq_length, tokenizer)
        eval_features = convert_pers_to_features(eval_examples, label_list,
                                                 max_seq_length, tokenizer)

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)

        claims_input_ids = torch.tensor([f.input_ids for f in claim_features],
                                        dtype=torch.long)
        claims_input_mask = torch.tensor(
            [f.input_mask for f in claim_features], dtype=torch.long)
        claims_segment_ids = torch.tensor(
            [f.segment_ids for f in claim_features], dtype=torch.long)
        claims_label_ids = torch.tensor([f.label_id for f in claim_features],
                                        dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids,
                                  claims_input_ids, claims_input_mask,
                                  claims_segment_ids, claims_label_ids)
        # Run prediction for full data
        #         eval_sampler = SequentialSampler(eval_data)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=eval_batch_size)
        #         print('all_input_ids:')
        #         print(all_input_ids)

        #         model.load_state_dict(torch.load(saved_model))
        model_state_dict = torch.load(saved_model)
        model = BertForConsistencyCueClassification.from_pretrained(
            'bert-base-uncased', num_labels=2, state_dict=model_state_dict)
        model.to(device)

        model.eval()
        eval_accuracy = 0

        eval_tp, eval_pred_c, eval_gold_c = 0, 0, 0
        eval_loss, eval_macro_p, eval_macro_r = 0, 0, 0

        raw_score = []
        predicted_labels = []
        predicted_prob = []
        gold_labels = []

        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids, claim_input_ids, claim_input_mask, claim_segment_ids, claim_label_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            claim_input_ids = claim_input_ids.to(device)
            claim_input_mask = claim_input_mask.to(device)
            claim_segment_ids = claim_segment_ids.to(device)
            claim_label_ids = claim_label_ids.to(device)

            #             print("start")
            #             print(input_ids)
            #             print(input_mask)
            #             print(segment_ids)
            #             print(label_ids)
            #             print(claim_input_ids)
            #             print(claim_input_mask)
            #             print(claim_segment_ids)
            #             print(claim_label_ids)
            #             print("end")
            with torch.no_grad():
                tmp_eval_loss = model(input_ids=input_ids,
                                      token_type_ids=segment_ids,
                                      attention_mask=input_mask,
                                      labels=label_ids,
                                      input_ids2=claim_input_ids,
                                      token_type_ids2=claim_segment_ids,
                                      attention_mask2=claim_input_mask,
                                      labels2=claim_label_ids)

                logits = model(input_ids=input_ids,
                               token_type_ids=segment_ids,
                               attention_mask=input_mask,
                               input_ids2=claim_input_ids,
                               token_type_ids2=claim_segment_ids,
                               attention_mask2=claim_input_mask)

#             print(logits)
#             print(logits[0])
            logits = logits.detach().cpu().numpy()
            #             print(logits)
            label_ids = label_ids.to('cpu').numpy()
            #             print(label_ids)

            tmp_eval_accuracy = accuracy(logits, label_ids)

            tmp_predicted = np.argmax(logits, axis=1)
            predicted_labels.extend(tmp_predicted.tolist())
            gold_labels.extend(label_ids.tolist())

            # Micro F1 (aggregated tp, fp, fn counts across all examples)
            tmp_tp, tmp_pred_c, tmp_gold_c = tp_pcount_gcount(
                logits, label_ids)
            eval_tp += tmp_tp
            eval_pred_c += tmp_pred_c
            eval_gold_c += tmp_gold_c

            pred_label = np.argmax(logits, axis=1)
            raw_score += zip(logits, pred_label, label_ids)

            # Macro F1 (averaged P, R across mini batches)
            tmp_eval_p, tmp_eval_r, tmp_eval_f1 = p_r_f1(logits, label_ids)

            eval_macro_p += tmp_eval_p
            eval_macro_r += tmp_eval_r

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        # Micro F1 (aggregated tp, fp, fn counts across all examples)
        eval_micro_p = eval_tp / eval_pred_c
        eval_micro_r = eval_tp / eval_gold_c
        eval_micro_f1 = 2 * eval_micro_p * eval_micro_r / (eval_micro_p +
                                                           eval_micro_r)

        # Macro F1 (averaged P, R across mini batches)
        eval_macro_p = eval_macro_p / nb_eval_steps
        eval_macro_r = eval_macro_r / nb_eval_steps
        eval_macro_f1 = 2 * eval_macro_p * eval_macro_r / (eval_macro_p +
                                                           eval_macro_r)

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        result = {
            'eval_loss': eval_loss,
            'eval_micro_p': eval_micro_p,
            'eval_micro_r': eval_micro_r,
            'eval_micro_f1': eval_micro_f1,
            'eval_macro_p': eval_macro_p,
            'eval_macro_r': eval_macro_r,
            'eval_macro_f1': eval_macro_f1,
            #                   'global_step': global_step,
            #                   'loss': tr_loss/nb_tr_steps
        }

        output_eval_file = os.path.join(
            output_dir,
            "elim_opp_sia_cos_bs24_lr2e_5_epoch25_eval_results.txt")
        output_raw_score = os.path.join(
            output_dir, "elim_opp_sia_cos_bs24_lr2e_5_epoch25_raw_score.csv")
        #         logger.info(classification_report(gold_labels, predicted_labels, target_names=label_list, digits=4))
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        with open(output_raw_score, 'w') as fout:
            fields = [
                "undermine_score", "support_score", "predict_label", "gold"
            ]
            writer = csv.DictWriter(fout, fieldnames=fields)
            writer.writeheader()
            for score, pred, gold in raw_score:
                writer.writerow({
                    "undermine_score": str(score[0]),
                    "support_score": str(score[1]),
                    "predict_label": str(pred),
                    "gold": str(gold)
                })
コード例 #3
0
# torch.cuda.empty_cache()
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from pytorch_pretrained_bert.optimization import BertAdam

# In[10]:

from run_classifier import StanceProcessor, MrpcProcessor, logger, convert_examples_to_features, set_optimizer_params_grad, copy_optimizer_params_to_model, accuracy, p_r_f1, tp_pcount_gcount, convert_claims_to_features, convert_pers_to_features

# In[11]:

if torch.cuda.is_available():

    # Tell PyTorch to use the GPU.
    device = torch.device("cuda")
    n_gpu = torch.cuda.device_count()
    logger.info('There are %d GPU(s) available.' % (n_gpu))
    logger.info('We will use the GPU:')
    logger.info(torch.cuda.get_device_name(0))

# If not...
else:
    logger.info('No GPU available, using the CPU instead.')
    device = torch.device("cpu")

# In[12]:

from transformers import BertTokenizer, AdamW, get_linear_schedule_with_warmup
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertPreTrainedModel, BertModel, BertConfig
from torch.nn import BCEWithLogitsLoss, CosineEmbeddingLoss, CrossEntropyLoss, MSELoss

# In[13]:
コード例 #4
0
                     warmup=warmup_proportion,
                     t_total=t_total)
# optimizer = AdamW(optimizer_grouped_parameters,
#                   lr = learning_rate, # args.learning_rate - default is 5e-5, our notebook had 2e-5
#                   eps = 1e-8, # args.adam_epsilon  - default is 1e-8.
#                   correct_bias=False
#                 )

# scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total)  # PyTorch scheduler

# In[11]:

global_step = 0
train_features = convert_examples_to_features(train_examples, label_list,
                                              max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info("  Num examples = %d", len(train_examples))
logger.info("  Batch size = %d", train_batch_size)
logger.info("  Num steps = %d", num_train_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features],
                             dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features],
                              dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                               dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features],
                             dtype=torch.long)

train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                           all_label_ids)
train_sampler = RandomSampler(train_data)
コード例 #5
0
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        input_ids2=None,
        attention_mask2=None,
        token_type_ids2=None,
        position_ids2=None,
        head_mask2=None,
        inputs_embeds2=None,
        labels2=None,
        input_ids3=None,
        attention_mask3=None,
        token_type_ids3=None,
        position_ids3=None,
        head_mask3=None,
        inputs_embeds3=None,
        labels3=None

        #         input_ids4=None,
        #         attention_mask4=None,
        #         token_type_ids4=None,
        #         position_ids4=None,
        #         head_mask4=None,
        #         inputs_embeds4=None,
        #         labels4=None
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        from transformers import BertTokenizer, BertForSequenceClassification
        import torch

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)

        loss, logits = outputs[:2]

        """
        # Pers rep
        _, outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            #             position_ids=position_ids,
            #             head_mask=head_mask,
            #             inputs_embeds=inputs_embeds,
        )
        # Claim rep
        _, outputs2 = self.bert(
            input_ids2,
            attention_mask=attention_mask2,
            token_type_ids=token_type_ids2,
            #             position_ids=position_ids2,
            #             head_mask=head_mask2,
            #             inputs_embeds=inputs_embeds2,
        )
        # Opp Pers rep
        _, outputs3 = self.bert(
            input_ids3,
            attention_mask=attention_mask3,
            token_type_ids=token_type_ids3,
            #             position_ids=position_ids2,
            #             head_mask=head_mask2,
            #             inputs_embeds=inputs_embeds2,
        )
        # Opp Claim rep
        #         _, outputs4 = self.bert(
        #             input_ids4,
        #             attention_mask=attention_mask4,
        #             token_type_ids=token_type_ids4,
        # #             position_ids=position_ids2,
        # #             head_mask=head_mask2,
        # #             inputs_embeds=inputs_embeds2,
        #         )

        pooled_output = outputs
        pooled_output2 = outputs2
        pooled_output3 = outputs3
        #         pooled_output4 = outputs4

        pooled_output = self.dropout(pooled_output)
        pooled_output2 = self.dropout(pooled_output2)
        pooled_output3 = self.dropout(pooled_output3)
        #         pooled_output4 = self.dropout(pooled_output4)

        #         A series of different concatenations(concat(),|minus|,multiply, ...)
        final_output_cat = torch.cat((pooled_output2, pooled_output), 1)
        final_output_minus = torch.abs(pooled_output2 - pooled_output)
        final_output_mult = torch.mul(pooled_output2, pooled_output)
        #         final_output_mimu = torch.cat((final_output_minus, final_output_mult),1)
        #         final_output_camu = torch.cat((final_output_cat, final_output_mult),1)
        #         final_output_cami = torch.cat((final_output_cat, final_output_minus),1)
        final_output_camimu = torch.cat(
            (final_output_cat, final_output_minus, final_output_mult), 1)
        cos_pooled_outputs = torch.cosine_similarity(pooled_output2,
                                                     pooled_output,
                                                     dim=1)

        #         ocop_final_output_cat = torch.cat((pooled_output4, pooled_output3),1)
        #         ocop_final_output_minus = torch.abs(pooled_output4-pooled_output3)
        #         ocop_final_output_mult = torch.mul(pooled_output4, pooled_output3)
        #         final_output_mimu = torch.cat((final_output_minus, final_output_mult),1)
        #         final_output_camu = torch.cat((final_output_cat, final_output_mult),1)
        #         final_output_cami = torch.cat((final_output_cat, final_output_minus),1)
        #         ocop_final_output_camimu = torch.cat((ocop_final_output_cat, ocop_final_output_minus, ocop_final_output_mult),1)
        #         ocop_cos_pooled_outputs = torch.cosine_similarity(pooled_output4, pooled_output3, dim=1)

        cop_final_output_cat = torch.cat((pooled_output2, pooled_output3), 1)
        cop_final_output_minus = torch.abs(pooled_output2 - pooled_output3)
        cop_final_output_mult = torch.mul(pooled_output2, pooled_output3)
        #         final_output_mimu = torch.cat((final_output_minus, final_output_mult),1)
        #         final_output_camu = torch.cat((final_output_cat, final_output_mult),1)
        #         final_output_cami = torch.cat((final_output_cat, final_output_minus),1)
        cop_final_output_camimu = torch.cat(
            (cop_final_output_cat, cop_final_output_minus,
             cop_final_output_mult), 1)
        cop_cos_pooled_outputs = torch.cosine_similarity(pooled_output2,
                                                         pooled_output3,
                                                         dim=1)

        #         ocp_final_output_cat = torch.cat((pooled_output4, pooled_output),1)
        #         ocp_final_output_minus = torch.abs(pooled_output4-pooled_output)
        #         ocp_final_output_mult = torch.mul(pooled_output4, pooled_output)
        #         final_output_mimu = torch.cat((final_output_minus, final_output_mult),1)
        #         final_output_camu = torch.cat((final_output_cat, final_output_mult),1)
        #         final_output_cami = torch.cat((final_output_cat, final_output_minus),1)
        #         ocp_final_output_camimu = torch.cat((ocp_final_output_cat, ocp_final_output_minus, ocp_final_output_mult),1)
        #         ocp_cos_pooled_outputs = torch.cosine_similarity(pooled_output4, pooled_output, dim=1)

        #         1
        #         torch.Size([hidden_size*2, 768])
        #         2
        #         torch.Size([hidden_size, 768])
        #         3
        #         torch.Size([hidden_size, 768])
        #         4
        #         torch.Size([hidden_size*2, 768])
        #         5
        #         torch.Size([hidden_size*3, 768])
        #         6
        #         torch.Size([hidden_size*3, 768])
        #         7
        #         torch.Size([hidden_size*4, 768])

        batch_size = list(pooled_output.size())[0]
        hidden_size = list(pooled_output.size())[1]

        final_output_all = torch.cat(
            (final_output_camimu, cos_pooled_outputs.unsqueeze(1)), 1)
        cop_final_output_all = torch.cat(
            (cop_final_output_camimu, cop_cos_pooled_outputs.unsqueeze(1)), 1)
        #         ocp_final_output_all = torch.cat((ocp_final_output_camimu, ocp_cos_pooled_outputs.unsqueeze(1)),1)
        #         ocop_final_output_all = torch.cat((ocop_final_output_camimu, ocop_cos_pooled_outputs.unsqueeze(1)),1)

        logits_ce = self.classifier(final_output_all)

        #         ocop_logits_ce = self.classifier(ocop_final_output_all)
        cop_logits_ce = self.classifier(cop_final_output_all)
        #         ocp_logits_ce = self.classifier(ocp_final_output_all)

        #         best_score = 0
        #         logits_grid = []
        #         for ori in (list(np.arange(0,2.5,0.5))+[10,100,1000]):
        #             for cop in (list(np.arange(0,2.5,0.5))+[10,100,1000]):
        #                 for ocp in (list(np.arange(0,2.5,0.5))+[10,100,1000]):
        #                     for ocop in (list(np.arange(0,2.5,0.5))+[10,100,1000]):
        #                         logits_grid.append((ori*logits_ce)-(cop*cop_logits_ce)-(ocp*ocp_logits_ce)+(ocop*ocop_logits_ce))

        concat_output_all = torch.cat((final_output_all, cop_final_output_all),
                                      1)

        final_logits = self.classifier2(concat_output_all)

        #         final_logits = (1*logits_ce)-(1*cop_logits_ce)

        #Calculate loss during training process
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(final_logits.view(-1), labels.view(-1))
            else:
                loss_fct_ce = CrossEntropyLoss()
                loss_ce = loss_fct_ce(final_logits.view(-1, self.num_labels),
                                      labels.view(-1))
                #                 logger.info('loss_ce:')
                #                 logger.info(loss_ce)

                #                 loss_ori = loss_fct_ce(logits_ori.view(-1, self.num_labels), labels.view(-1))
                #                 print('loss_ori:')
                #                 print(loss_ori)
                #                 loss_fct_cos = CosineEmbeddingLoss()
                loss_fct_tri = TripletLoss()

                #                 labels2[labels2==0] = -1
                #                 loss_cos = loss_fct_cos(pooled_output, pooled_output2, labels2)
                #                 labels2[labels2==-1] = 0

                #                 labels3[labels3==1] = -1
                #                 labels3[labels3==0] = 1
                #                 loss_cos2 = loss_fct_cos(pooled_output, pooled_output3, labels3)
                #                 labels3[labels3== 1] = 0
                #                 labels3[labels3== -1] = 1

                k = 0
                index = []
                for i in labels:
                    k = k + 1
                    if i == 0:
                        index.append(k)
                pooled_output_inter = pooled_output.clone().detach()
                pooled_output3_inter = pooled_output3.clone().detach()

                pooled_output_inter2 = pooled_output.clone().detach()
                pooled_output3_inter2 = pooled_output3.clone().detach()

                for l in index:
                    pooled_output_inter[l - 1], pooled_output3_inter[
                        l -
                        1] = pooled_output3_inter[l -
                                                  1], pooled_output_inter[l -
                                                                          1]

                for l in index:
                    pooled_output3_inter2[l - 1], pooled_output_inter2[
                        l -
                        1] = pooled_output_inter2[l -
                                                  1], pooled_output3_inter2[l -
                                                                            1]

                loss_tri = loss_fct_tri(pooled_output2, pooled_output_inter,
                                        pooled_output3_inter2)

                loss = loss_ce + loss_tri
                logger.info('Ce: %s; Tri: %s' % (str(loss_ce), str(loss_tri)))

                #             outputs = (loss,) + outputs
                #             outputs = (loss,) + logits_cos
                outputs = loss
                return outputs
        else:
            #Get predictions when doing evaluation
            return final_logits