def main(): args = parser.parse_args() if os.path.isfile(args.model + '/hparams.json'): with open(args.model + '/hparams.json') as f: bert_config_params = json.load(f) else: raise ValueError('invalid model name.') vocab_size = bert_config_params['vocab_size'] max_seq_length = bert_config_params['max_position_embeddings'] batch_size = args.batch_size save_every = args.save_every num_epochs = args.num_epochs EOT_TOKEN = vocab_size - 4 MASK_TOKEN = vocab_size - 3 CLS_TOKEN = vocab_size - 2 SEP_TOKEN = vocab_size - 1 with open('ja-bpe.txt', encoding='utf-8') as f: bpe = f.read().split('\n') with open('emoji.json', encoding='utf-8') as f: emoji = json.loads(f.read()) enc = BPEEncoder_ja(bpe, emoji) keys = [ f for f in os.listdir(args.input_dir) if os.path.isdir(args.input_dir + '/' + f) ] keys = sorted(keys) num_labels = len(keys) input_contexts = [] input_keys = [] idmapping_dict = {} for i, f in enumerate(keys): n = 0 for t in os.listdir(f'{args.input_dir}/{f}'): if os.path.isfile(f'{args.input_dir}/{f}/{t}'): with open(f'{args.input_dir}/{f}/{t}', encoding='utf-8') as fn: if args.train_by_line: for p in fn.readlines(): tokens = enc.encode(p.strip())[:max_seq_length - 2] tokens = [CLS_TOKEN] + tokens + [SEP_TOKEN] if len(tokens) < max_seq_length: tokens.extend([0] * (max_seq_length - len(tokens))) input_contexts.append(tokens) input_keys.append(i) n += 1 else: p = fn.read() tokens = enc.encode(p.strip())[:max_seq_length - 3] tokens = [CLS_TOKEN] + tokens + [EOT_TOKEN, SEP_TOKEN] if len(tokens) < max_seq_length: tokens.extend([0] * (max_seq_length - len(tokens))) input_contexts.append(tokens) input_keys.append(i) n += 1 print(f'{args.input_dir}/{f} mapped for id_{i}, read {n} contexts.') idmapping_dict[f] = i input_indexs = np.random.permutation(len(input_contexts)) bert_config = BertConfig(**bert_config_params) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = args.gpu with tf.Session(config=config) as sess: input_ids = tf.placeholder(tf.int32, [None, None]) input_mask = tf.placeholder(tf.int32, [None, None]) segment_ids = tf.placeholder(tf.int32, [None, None]) masked_lm_positions = tf.placeholder(tf.int32, [None, None]) masked_lm_ids = tf.placeholder(tf.int32, [None, None]) masked_lm_weights = tf.placeholder(tf.float32, [None, None]) next_sentence_labels = tf.placeholder(tf.int32, [None]) model = BertModel(config=bert_config, is_training=True, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=False) output = model.get_sequence_output() (_, _, _) = get_masked_lm_output(bert_config, model.get_sequence_output(), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights) (_, _, _) = get_next_sentence_output(bert_config, model.get_pooled_output(), next_sentence_labels) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(args.model) saver.restore(sess, ckpt) train_vars = tf.trainable_variables() restored_weights = {} for i in range(len(train_vars)): restored_weights[train_vars[i].name] = sess.run(train_vars[i]) labels = tf.placeholder(tf.int32, [ None, ]) output_layer = model.get_pooled_output() if int(tf.__version__[0]) > 1: hidden_size = output_layer.shape[-1] else: hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable("output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate) train_vars = tf.trainable_variables() opt_grads = tf.gradients(loss, train_vars) opt_grads = list(zip(opt_grads, train_vars)) opt_apply = opt.apply_gradients(opt_grads) summaries = tf.summary.scalar('loss', loss) summary_log = tf.summary.FileWriter( os.path.join(CHECKPOINT_DIR, args.run_name)) counter = 1 counter_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'counter') if os.path.exists(counter_path): # Load the step number if we're resuming a run # Add 1 so we don't immediately try to save again with open(counter_path, 'r') as fp: counter = int(fp.read()) + 1 hparams_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'hparams.json') maketree(os.path.join(CHECKPOINT_DIR, args.run_name)) with open(hparams_path, 'w') as fp: fp.write(json.dumps(bert_config_params)) idmaps_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'idmaps.json') with open(idmaps_path, 'w') as fp: fp.write(json.dumps(idmapping_dict)) sess.run(tf.global_variables_initializer()) # init output_weights restored = 0 for k, v in restored_weights.items(): for i in range(len(train_vars)): if train_vars[i].name == k: assign_op = train_vars[i].assign(v) sess.run(assign_op) restored += 1 assert restored == len(restored_weights), 'fail to restore model.' saver = tf.train.Saver(var_list=tf.trainable_variables()) def save(): maketree(os.path.join(CHECKPOINT_DIR, args.run_name)) print( 'Saving', os.path.join(CHECKPOINT_DIR, args.run_name, 'model-{}').format(counter)) saver.save(sess, os.path.join(CHECKPOINT_DIR, args.run_name, 'model'), global_step=counter) with open(counter_path, 'w') as fp: fp.write(str(counter) + '\n') avg_loss = (0.0, 0.0) start_time = time.time() def sample_feature(i): last = min((i + 1) * batch_size, len(input_indexs)) _input_ids = [ input_contexts[idx] for idx in input_indexs[i * batch_size:last] ] _input_masks = [[1] * len(input_contexts[idx]) + [0] * (max_seq_length - len(input_contexts[idx])) for idx in input_indexs[i * batch_size:last]] _segments = [[1] * len(input_contexts[idx]) + [0] * (max_seq_length - len(input_contexts[idx])) for idx in input_indexs[i * batch_size:last]] _labels = [ input_keys[idx] for idx in input_indexs[i * batch_size:last] ] return { input_ids: _input_ids, input_mask: _input_masks, segment_ids: _segments, masked_lm_positions: np.zeros((len(_input_ids), 0), dtype=np.int32), masked_lm_ids: np.zeros((len(_input_ids), 0), dtype=np.int32), masked_lm_weights: np.ones((len(_input_ids), 0), dtype=np.float32), next_sentence_labels: np.zeros((len(_input_ids), ), dtype=np.int32), labels: _labels } try: for ep in range(num_epochs): if ep % args.save_every == 0: save() prog = tqdm.tqdm( range(0, len(input_contexts) // batch_size, 1)) for i in prog: (_, v_loss, v_summary) = sess.run( (opt_apply, loss, summaries), feed_dict=sample_feature(i)) summary_log.add_summary(v_summary, counter) avg_loss = (avg_loss[0] * 0.99 + v_loss, avg_loss[1] * 0.99 + 1.0) prog.set_description( '[{ep} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}' .format(ep=ep, time=time.time() - start_time, loss=v_loss, avg=avg_loss[0] / avg_loss[1])) counter += 1 except KeyboardInterrupt: print('interrupted') save() save()
masked_lm_positions = tf.placeholder(tf.int32, [None, None]) masked_lm_ids = tf.placeholder(tf.int32, [None, None]) masked_lm_weights = tf.placeholder(tf.float32, [None, None]) next_sentence_labels = tf.placeholder(tf.int32, [None]) model = BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=False) output = model.get_sequence_output() (_,_,log_prob) = get_masked_lm_output( bert_config, model.get_sequence_output(), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights) (_,_,_) = get_next_sentence_output( bert_config, model.get_pooled_output(), next_sentence_labels) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(args.model) saver.restore(sess, ckpt) with open('ja-bpe.txt', encoding='utf-8') as f: bpe = f.read().split('\n') with open('emoji.json', encoding='utf-8') as f: emoji = json.loads(f.read()) enc = BPEEncoder_ja(bpe, emoji)
def main(): args = parser.parse_args() if os.path.isfile(args.model + '/hparams.json'): with open(args.model + '/hparams.json') as f: bert_config_params = json.load(f) else: raise ValueError('invalid model name.') if os.path.isfile(args.model + '/idmaps.json'): with open(args.model + '/idmaps.json') as f: idmapping_dict = json.load(f) else: raise ValueError('invalid model name.') vocab_size = bert_config_params['vocab_size'] max_seq_length = bert_config_params['max_position_embeddings'] batch_size = args.batch_size EOT_TOKEN = vocab_size - 4 MASK_TOKEN = vocab_size - 3 CLS_TOKEN = vocab_size - 2 SEP_TOKEN = vocab_size - 1 with open('ja-bpe.txt', encoding='utf-8') as f: bpe = f.read().split('\n') with open('emoji.json', encoding='utf-8') as f: emoji = json.loads(f.read()) enc = BPEEncoder_ja(bpe, emoji) num_labels = len(idmapping_dict) input_contexts = [] input_keys = [] input_names = [] for f, i in idmapping_dict.items(): n = 0 for t in os.listdir(f'{args.input_dir}/{f}'): if os.path.isfile(f'{args.input_dir}/{f}/{t}'): with open(f'{args.input_dir}/{f}/{t}', encoding='utf-8') as fn: if args.train_by_line: for ln, p in enumerate(fn.readlines()): tokens = enc.encode(p.strip())[:max_seq_length - 3] tokens = [CLS_TOKEN ] + tokens + [EOT_TOKEN, SEP_TOKEN] if len(tokens) < max_seq_length: tokens.extend([0] * (max_seq_length - len(tokens))) input_contexts.append(tokens) input_keys.append(i) input_names.append(f'{f}/{t}#{ln}') n += 1 else: p = fn.read() tokens = enc.encode(p.strip())[:max_seq_length - 2] tokens = [CLS_TOKEN] + tokens + [SEP_TOKEN] if len(tokens) < max_seq_length: tokens.extend([0] * (max_seq_length - len(tokens))) input_contexts.append(tokens) input_keys.append(i) input_names.append(f'{f}/{t}') n += 1 print(f'{args.input_dir}/{f} mapped for id_{i}, read {n} contexts.') input_indexs = np.arange(len(input_contexts)) bert_config = BertConfig(**bert_config_params) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = args.gpu with tf.Session(config=config) as sess: input_ids = tf.placeholder(tf.int32, [None, None]) input_mask = tf.placeholder(tf.int32, [None, None]) segment_ids = tf.placeholder(tf.int32, [None, None]) masked_lm_positions = tf.placeholder(tf.int32, [None, None]) masked_lm_ids = tf.placeholder(tf.int32, [None, None]) masked_lm_weights = tf.placeholder(tf.float32, [None, None]) next_sentence_labels = tf.placeholder(tf.int32, [None]) model = BertModel(config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=False) output = model.get_sequence_output() (_, _, _) = get_masked_lm_output(bert_config, model.get_sequence_output(), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights) (_, _, _) = get_next_sentence_output(bert_config, model.get_pooled_output(), next_sentence_labels) saver = tf.train.Saver() labels = tf.placeholder(tf.int32, [ batch_size, ]) output_layer = model.get_pooled_output() if int(tf.__version__[0]) > 1: hidden_size = output_layer.shape[-1] else: hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable("output_bias", [num_labels], initializer=tf.zeros_initializer()) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) saver = tf.train.Saver(var_list=tf.trainable_variables()) ckpt = tf.train.latest_checkpoint(args.model) saver.restore(sess, ckpt) def sample_feature(i): last = min((i + 1) * batch_size, len(input_indexs)) _input_ids = [ input_contexts[idx] for idx in input_indexs[i * batch_size:last] ] _input_masks = [[1] * len(input_contexts[idx]) + [0] * (max_seq_length - len(input_contexts[idx])) for idx in input_indexs[i * batch_size:last]] _segments = [[1] * len(input_contexts[idx]) + [0] * (max_seq_length - len(input_contexts[idx])) for idx in input_indexs[i * batch_size:last]] _labels = [ input_keys[idx] for idx in input_indexs[i * batch_size:last] ] return { input_ids: _input_ids, input_mask: _input_masks, segment_ids: _segments, masked_lm_positions: np.zeros((len(_input_ids), 0), dtype=np.int32), masked_lm_ids: np.zeros((len(_input_ids), 0), dtype=np.int32), masked_lm_weights: np.ones((len(_input_ids), 0), dtype=np.float32), next_sentence_labels: np.zeros((len(_input_ids), ), dtype=np.int32), labels: _labels } preds = [] prog = tqdm.tqdm(range(0, len(input_contexts) // batch_size, 1)) for i in prog: prob = sess.run(probabilities, feed_dict=sample_feature(i)) for p in prob: pred = np.argmax(p) preds.append(pred) pd.DataFrame({ 'id': input_names, 'y_true': input_keys, 'y_pred': preds }).to_csv(args.output_file, index=False) r = np.zeros((num_labels, num_labels), dtype=int) for t, p in zip(input_keys, preds): r[t, p] += 1 fig = plt.figure(figsize=(12, 6), dpi=72) ax = plt.matshow(r, interpolation='nearest', aspect=.5, cmap='cool') for (i, j), z in np.ndenumerate(r): if z >= 1000: plt.text(j - .33, i, '{:0.1f}K'.format(z / 1000), ha='left', va='center', size=9, color='black') else: plt.text(j - .33, i, f'{z}', ha='left', va='center', size=9, color='black') pfile = args.output_file if args.output_file.lower().endswith('.csv'): pfile = args.output_file[:-4] plt.savefig(pfile + '_map.png')