コード例 #1
0
ファイル: ft_wiper.py プロジェクト: sash-a/CoDeepNEAT
def reset_internal_config(run_name: str):
    j = json.load(open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'r'))

    if j['state'] == 'finished':
        j['state'] = 'ft'
        j['ft_started'] = False

    j['finished'] = False

    json.dump(j, open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'w'))
コード例 #2
0
def _fully_train_logging(model: Network,
                         loss: float,
                         epoch: int,
                         attempt: int,
                         acc: float = -1):
    print('epoch: {}\nloss: {}'.format(epoch, loss))

    log = {}
    metric_name = 'accuracy_fm_' + str(model.target_feature_multiplier) + (
        "_r_" + str(attempt) if attempt > 0 else "")
    if acc != -1:
        log[metric_name] = acc
        print('accuracy: {}'.format(acc))
    print('\n')

    internal_config.ft_epoch = epoch
    save_config(config.run_name)

    if config.use_wandb:
        log['loss_' + str(attempt)] = loss
        wandb.log(log)
        model.save()
        wandb.save(model.save_location())

        wandb.config.update({'current_ft_epoch': epoch}, allow_val_change=True)
        wandb.save(join(get_run_folder_path(config.run_name), 'config.json'))
コード例 #3
0
def get_config_path(path: str, scheduler_run_name: str) -> Tuple[str, str]:
    """picks which config to use next."""
    config_paths = read_json(build_file_path(path))  # dict: path -> num_runs

    for config_path in config_paths:
        n_runs = config_paths[config_path]
        for i in range(n_runs):
            config_dict = read_json(build_file_path(config_path))
            scheduled_run_name = config_dict['run_name']
            run_name = _get_effective_run_name(scheduled_run_name, i, scheduler_run_name)
            run_path = run_man.get_run_folder_path(run_name)

            run_folder_exists = os.path.exists(run_path)
            if run_folder_exists:
                cfg.internal_config.load(run_name)

            run_currently_running_in_another_process = run_folder_exists and cfg.internal_config.running

            if run_currently_running_in_another_process:
                print('run {} is being run in another process, moving on'.format(run_name))
            if cfg.internal_config.finished or run_currently_running_in_another_process:
                cfg.internal_config.__init__()  # reset internal config
                continue

            print('scheduler running', run_name)

            if run_folder_exists:
                cfg.internal_config.running = True
                cfg.internal_config.save(run_name, False)

            return config_path, run_name

    raise Exception('Could not find any non-running/non-finished configs in the batch run')
コード例 #4
0
    def save(self, run_name: str, wandb_save=True):
        file_path = join(runs_manager.get_run_folder_path(run_name), 'internal_config.json')

        with open(file_path, 'w+') as f:
            json.dump(self.__dict__, f, indent=2)

        if configuration.config.use_wandb and wandb_save:
            try:
                wandb.save(file_path)
            except ValueError:
                print('Error: You must call `wandb.init` before calling save. This happens because wandb is not '
                      'initialized in the main thread in fully training. If you were not fully training this is should '
                      'be investigated, otherwise ignore it')
コード例 #5
0
ファイル: batch_runner.py プロジェクト: sash-a/CoDeepNEAT
def get_fully_train_state(run_name):
    """reads the inner config of the given run, and determines if it is to be evolved/ FT'd"""
    run_path = run_man.get_run_folder_path(run_name)

    path_exists = os.path.exists(run_path)
    if path_exists:
        cfg.internal_config.load(run_name)

    fully_training = cfg.internal_config.state == 'ft'
    continue_fully_training = fully_training and cfg.internal_config.ft_started
    cfg.internal_config.__init__()

    return fully_training, continue_fully_training
コード例 #6
0
ファイル: logger_reporter.py プロジェクト: sash-a/CoDeepNEAT
    def __init__(self, fm: float, best: int, attempt: int):
        """
        @param fm: feature multiplier: how much bigger or smaller to make each layer
        @param best: the ranking of the network in evolution - ie best = 1 mean that network got the highest accuracy
         in evolution
        """
        path = join(get_run_folder_path(config.run_name), 'logs', f'fm{fm}',
                    f'best{best}')
        file = join(path, f'attempt{attempt}.log')
        Path(path).mkdir(parents=True, exist_ok=True)

        self.logger = logging.getLogger(file)
        self.logger.addHandler(logging.FileHandler(file, 'a'))
        self.logger.setLevel(logging.DEBUG)

        self.logger.info(f'fm:{fm}')
        self.logger.info(f'best:{best}')
        self.logger.info(f'attempt:{attempt}')
        self.logger.info(f'config:{config.__dict__}')

        print(f'INITIALIZED FT LOGGER. DIR={file}')
        sys.stdout.flush()
コード例 #7
0
ファイル: ft_wiper.py プロジェクト: sash-a/CoDeepNEAT
def set_run_inactive(run_name: str):
    j = json.load(open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'r'))

    j['running'] = False
    json.dump(j, open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'w'))
コード例 #8
0
ファイル: ft_wiper.py プロジェクト: sash-a/CoDeepNEAT
def reset_internal_config(run_name: str):
    j = json.load(open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'r'))

    if j['state'] == 'finished':
        j['state'] = 'ft'
        j['ft_started'] = False

    j['finished'] = False

    json.dump(j, open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'w'))


def set_run_inactive(run_name: str):
    j = json.load(open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'r'))

    j['running'] = False
    json.dump(j, open(os.path.join(get_run_folder_path(run_name), 'internal_config.json'), 'w'))


if __name__ == '__main__':
    dirs = [d for d in os.listdir(__get_runs_folder_path()) if os.path.isdir(get_run_folder_path(d))]
    for dir in dirs:
        try:
            wipe(dir)
            reset_internal_config(dir)
            set_run_inactive(dir)

        except FileNotFoundError:
            print(f'no relevant files in {dir}')
コード例 #9
0
ファイル: ft_naming_fixer.py プロジェクト: sash-a/CoDeepNEAT
        config.fully_train_best_n_blueprints)

    print(
        f'best blueprints ({len(best_blueprints)}): {[b[0].id for b in best_blueprints]}'
    )
    best = 1
    for bp, _ in best_blueprints:

        for fm in [1, 3, 5]:
            old_file_name = f'bp-{bp.id}_fm-{fm}.model'
            new_file_name = f'bp-{bp.id}_fm-{fm}-best-{best}.model'

            old_file_path = os.path.join(get_fully_train_folder_path(run_name),
                                         old_file_name)
            new_file_path = os.path.join(get_fully_train_folder_path(run_name),
                                         new_file_name)

            if os.path.exists(old_file_path):
                print(f'renaming: {old_file_name} to {new_file_name}')
                os.rename(old_file_path, new_file_path)

        best += 1


if __name__ == '__main__':
    for run in os.listdir(__get_runs_folder_path()):
        if 'base' in run or 'elite' in run:
            fix(get_run_folder_path(run))

    # fix(get_run_folder_path('elite_1'))