コード例 #1
0
def explain(datasource, select, explainer, model_params, result_table, model):
    if model_params is None:
        model_params = {}

    summary_params = dict()
    for k in model_params:
        if k.startswith("summary."):
            summary_key = k.replace("summary.", "")
            summary_params[summary_key] = model_params[k]

    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    bst = xgb.Booster()
    bst.load_model("my_model")

    if explainer == "XGBoostExplainer":
        xgb_native_explain(bst, datasource, result_table)
    else:
        # when explainer is "" or "TreeExplainer" use SHAP by default.
        shap_explain(bst, datasource, select, summary_params, result_table,
                     model)
コード例 #2
0
def submit_local_pred(datasource, select, result_table, pred_label_name, load):
    model = Model.load_from_db(datasource, load)
    if model.get_type() == EstimatorType.XGBOOST:
        xgboost_pred(datasource, select, result_table, pred_label_name, model)
    else:
        raise NotImplementedError("not implemented model type: %s" %
                                  model.get_type())
コード例 #3
0
ファイル: evaluate.py プロジェクト: jackylovecoding/sqlflow
def evaluate_step(datasource,
                  select,
                  result_table,
                  model,
                  label_name,
                  model_params,
                  pai_table=None):
    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    if model_params is None:
        model_params = {}

    validation_metrics = model_params.get("validation.metrics", "Accuracy")
    validation_metrics = [m.strip() for m in validation_metrics.split(',')]
    validation_steps = model_params.get("validation.steps", None)
    batch_size = model_params.get("validation.batch_size", 1)
    verbose = model_params.get("validation.verbose", 0)

    conn = db.connect_with_data_source(datasource)
    create_evaluate_table(conn, result_table, validation_metrics)
    conn.close()

    model_params = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    train_label_desc = model.get_meta("label").get_field_desc()[0]
    estimator_string = model.get_meta("class_name")
    save = "model_save"

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    feature_columns = compile_ir_feature_columns(train_fc_map,
                                                 model.get_type())
    train_label_desc.name = label_name
    label_meta = train_label_desc.to_dict(dtype_to_string=True)

    _evaluate(datasource=datasource,
              estimator_string=estimator_string,
              select=select,
              result_table=result_table,
              feature_columns=feature_columns,
              feature_column_names=feature_column_names,
              feature_metas=feature_metas,
              label_meta=label_meta,
              model_params=model_params,
              validation_metrics=validation_metrics,
              save=save,
              batch_size=batch_size,
              validation_steps=validation_steps,
              verbose=verbose,
              pai_table=pai_table)
コード例 #4
0
def get_saved_model_type_and_estimator(datasource, model_name):
    """Get oss model type and estimator name, model can be:
    1. PAI ML models: model is saved by pai
    2. xgboost: on OSS with model file xgboost_model_desc
    3. PAI tensorflow models: on OSS with meta file: tensorflow_model_desc

    Args:
        datasource: the DBMS connection URI.
        model_name: the model to get info

    Returns:
        If model is TensorFlow model, return type and estimator name
        If model is XGBoost, or other PAI model, just return model type
    """
    # FIXME(typhoonzero): if the model not exist on OSS, assume it's a random
    # forest model should use a general method to fetch the model and see the
    # model type.
    meta = Model.load_metadata_from_db(datasource, model_name)
    return meta.get_type(), meta.get_meta("class_name")
コード例 #5
0
ファイル: submitter.py プロジェクト: hsjung6/sqlflow
def submit_local_pred(datasource,
                      original_sql,
                      select,
                      model_name,
                      label_column,
                      model_params,
                      result_table,
                      user=""):
    model = Model.load_from_db(datasource, model_name)
    if model.get_type() == EstimatorType.XGBOOST:
        pred_func = xgboost_pred
    else:
        pred_func = tf_pred

    pred_func(datasource=datasource,
              select=select,
              result_table=result_table,
              pred_label_name=label_column,
              model=model)
コード例 #6
0
ファイル: submitter.py プロジェクト: hsjung6/sqlflow
def submit_local_explain(datasource,
                         original_sql,
                         select,
                         model_name,
                         model_params,
                         result_table,
                         explainer="TreeExplainer",
                         user=""):
    model = Model.load_from_db(datasource, model_name)
    if model.get_type() == EstimatorType.XGBOOST:
        explain_func = xgboost_explain
    else:
        explain_func = tf_explain

    explain_func(datasource=datasource,
                 select=select,
                 explainer=explainer,
                 model_params=model_params,
                 result_table=result_table,
                 model=model)
コード例 #7
0
ファイル: submitter.py プロジェクト: hsjung6/sqlflow
def submit_local_evaluate(datasource,
                          original_sql,
                          select,
                          pred_label_name,
                          model_name,
                          model_params,
                          result_table,
                          user=""):
    model = Model.load_from_db(datasource, model_name)
    if model.get_type() == EstimatorType.XGBOOST:
        evaluate_func = xgboost_evaluate
    else:
        evaluate_func = tf_evaluate

    evaluate_func(datasource=datasource,
                  select=select,
                  result_table=result_table,
                  model=model,
                  pred_label_name=pred_label_name,
                  model_params=model_params)
コード例 #8
0
def evaluate(datasource,
             select,
             result_table,
             model,
             label_name=None,
             model_params=None,
             result_column_names=[],
             pai_table=None):
    """TBD
    """
    if model_params is None:
        model_params = {}
    validation_metrics = model_params.get("validation.metrics",
                                          "accuracy_score")
    validation_metrics = [m.strip() for m in validation_metrics.split(",")]

    bst = xgb.Booster()
    if isinstance(model, six.string_types):
        with temp_file.TemporaryDirectory(as_cwd=True):
            model = Model.load_from_db(datasource, model)
            bst.load_model("my_model")
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)
        bst.load_model("my_model")

    model_params = model.get_meta("attributes")
    fc_map_ir = model.get_meta("features")
    train_label = model.get_meta("label")
    train_label_desc = train_label.get_field_desc()[0]

    if label_name:
        train_label_desc.name = label_name

    feature_columns = compile_ir_feature_columns(fc_map_ir,
                                                 EstimatorType.XGBOOST)
    field_descs = get_ordered_field_descs(fc_map_ir)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    transform_fn = ComposedColumnTransformer(
        feature_column_names, *feature_columns["feature_columns"])

    is_pai = True if pai_table else False
    if is_pai:
        conn = PaiIOConnection.from_table(pai_table)
    else:
        conn = db.connect_with_data_source(datasource)

    with temp_file.TemporaryDirectory() as tmp_dir_name:
        pred_fn = os.path.join(tmp_dir_name, "predict.txt")

        dpred = xgb_dataset(
            datasource=datasource,
            fn=pred_fn,
            dataset_sql=select,
            feature_metas=feature_metas,
            feature_column_names=feature_column_names,
            label_meta=train_label_desc.to_dict(dtype_to_string=True),
            cache=True,
            batch_size=10000,
            transform_fn=transform_fn,
            is_pai=is_pai,
            pai_table=pai_table,
            pai_single_file=True,
            feature_column_code=fc_map_ir)

        for i, pred_dmatrix in enumerate(dpred):
            if is_pai:
                feature_file_name = pred_fn
            else:
                feature_file_name = pred_fn + "_%d" % i
            preds = _calc_predict_result(bst, pred_dmatrix, model_params)
            _store_evaluate_result(preds, feature_file_name, train_label_desc,
                                   result_table, result_column_names,
                                   validation_metrics, conn)

    conn.close()
コード例 #9
0
ファイル: explain.py プロジェクト: hsjung6/sqlflow
def explain(datasource, select, explainer, model_params, result_table, model):
    """
    Do explanation to a trained TensorFlow model.

    Args:
        datasource (str): the database connection string.
        select (str): the input data to predict.
        explainer (str): the explainer to explain the model.
                         Not used in TensorFlow models.
        model_params (dict): the parameters for evaluation.
        result_table (str): the output data table.
        model (Model|str): the model object or where to load the model.

    Returns:
        None.
    """
    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    plot_type = model_params.get("summary.plot_type", "bar")

    train_attributes = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    train_label_desc = model.get_meta("label").get_field_desc()[0]
    estimator_string = model.get_meta("class_name")
    save = "model_save"

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    feature_columns = compile_ir_feature_columns(train_fc_map,
                                                 model.get_type())

    label_name = model_params.get("label_col", train_label_desc.name)
    train_label_desc.name = label_name
    label_meta = train_label_desc.to_dict(dtype_to_string=True)

    if result_table:
        conn = db.connect_with_data_source(datasource)
        if estimator_string.startswith("BoostedTrees"):
            column_defs = [
                "feature %s" %
                DataType.to_db_field_type(conn.driver, DataType.STRING),
                "dfc %s" %
                DataType.to_db_field_type(conn.driver, DataType.FLOAT32),
                "gain %s" %
                DataType.to_db_field_type(conn.driver, DataType.FLOAT32),
            ]
        else:
            selected_cols = db.selected_cols(conn, select)
            if label_name in selected_cols:
                selected_cols.remove(label_name)

            name_to_shape = dict([(fd.name, fd.shape) for fd in field_descs])
            column_defs = []
            float_field_type = DataType.to_db_field_type(
                conn.driver, DataType.FLOAT32)
            for name in selected_cols:
                shape = name_to_shape.get(name, None)
                if shape is None:
                    raise ValueError("cannot find column %s" % name)

                size = int(np.prod(shape))
                if size == 1:
                    column_def = "%s %s" % (name, float_field_type)
                    column_defs.append(column_def)
                else:
                    for i in six.moves.range(size):
                        column_def = "%s_%d %s" % (name, i, float_field_type)
                        column_defs.append(column_def)

        drop_sql = "DROP TABLE IF EXISTS %s;" % result_table
        create_sql = "CREATE TABLE %s (%s);" % (result_table,
                                                ",".join(column_defs))
        conn.execute(drop_sql)
        conn.execute(create_sql)
        conn.close()

    _explain(datasource=datasource,
             estimator_string=estimator_string,
             select=select,
             feature_columns=feature_columns,
             feature_column_names=feature_column_names,
             feature_metas=feature_metas,
             label_meta=label_meta,
             model_params=train_attributes,
             save=save,
             plot_type=plot_type,
             result_table=result_table)

    with open('summary.png', 'rb') as f:
        img = f.read()

    img = base64.b64encode(img)
    if six.PY3:
        img = img.decode('utf-8')
    img = "<div align='center'><img src='data:image/png;base64,%s' /></div>" \
          % img
    print(img)
コード例 #10
0
def predict_step(datasource,
                 select,
                 result_table,
                 label_name,
                 model,
                 pai_table=None):
    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    model_params = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    label_meta = model.get_meta("label")
    train_label_desc = label_meta.get_field_desc()[0] if label_meta else None
    train_label_name = train_label_desc.name if train_label_desc else None
    estimator_string = model.get_meta("class_name")
    save = "model_save"

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    feature_columns = compile_ir_feature_columns(train_fc_map,
                                                 model.get_type())

    is_pai = True if pai_table else False
    if is_pai:
        select = "SELECT * FROM %s" % pai_table

    conn = db.connect_with_data_source(datasource)
    result_column_names, train_label_idx = create_predict_table(
        conn, select, result_table, train_label_desc, label_name)

    if is_pai:
        conn.close()
        conn = PaiIOConnection.from_table(pai_table)
        select = None

    selected_cols = result_column_names[0:-1]
    if train_label_idx >= 0:
        selected_cols = selected_cols[0:train_label_idx] + [
            train_label_name
        ] + selected_cols[train_label_idx:]

    estimator = import_model(estimator_string)
    model_params.update(feature_columns)
    is_estimator = is_tf_estimator(estimator)
    predict_generator = db.db_generator(conn, select)

    pop_optimizer_and_loss(model_params)
    if not is_estimator:
        if not issubclass(estimator, tf.keras.Model):
            # functional model need field_metas parameter
            model_params["field_metas"] = feature_metas
        print("Start predicting using keras model...")
        keras_predict(estimator, model_params, save, result_table,
                      feature_column_names, feature_metas, train_label_name,
                      label_name, conn, predict_generator, selected_cols)
    else:
        model_params['model_dir'] = save
        print("Start predicting using estimator model...")
        estimator_predict(result_table, feature_column_names, feature_metas,
                          train_label_name, label_name, conn,
                          predict_generator, selected_cols)

    print("Done predicting. Predict table : %s" % result_table)
    conn.close()
コード例 #11
0
def evaluate(datasource,
             select,
             result_table,
             model,
             pred_label_name=None,
             model_params=None):
    """
    Do evaluation to a trained TensorFlow model.

    Args:
        datasource (str): the database connection string.
        select (str): the input data to predict.
        result_table (str): the output data table.
        model (Model|str): the model object or where to load the model.
        pred_label_name (str): the label column name.
        model_params (dict): the parameters for evaluation.

    Returns:
        None.
    """
    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    validation_metrics = model_params.get("validation.metrics", "Accuracy")
    validation_metrics = [m.strip() for m in validation_metrics.split(',')]
    validation_steps = model_params.get("validation.steps", None)
    batch_size = model_params.get("validation.batch_size", 1)
    verbose = model_params.get("validation.verbose", 0)

    conn = db.connect_with_data_source(datasource)
    create_evaluate_table(conn, result_table, validation_metrics)
    conn.close()

    model_params = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    train_label_desc = model.get_meta("label").get_field_desc()[0]
    estimator_string = model.get_meta("class_name")
    save = "model_save"

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    feature_columns = compile_ir_feature_columns(train_fc_map,
                                                 model.get_type())
    train_label_desc.name = pred_label_name
    label_meta = train_label_desc.to_dict(dtype_to_string=True)

    _evaluate(datasource=datasource,
              estimator_string=estimator_string,
              select=select,
              result_table=result_table,
              feature_columns=feature_columns,
              feature_column_names=feature_column_names,
              feature_metas=feature_metas,
              label_meta=label_meta,
              model_params=model_params,
              validation_metrics=validation_metrics,
              save=save,
              batch_size=batch_size,
              validation_steps=validation_steps,
              verbose=verbose)
コード例 #12
0
def submit_pai_predict(datasource,
                       original_sql,
                       select,
                       model,
                       label_name,
                       pred_params,
                       result_table,
                       user=""):
    """This function pack needed params and resource to a tarball
    and submit a prediction task to PAI

    Args:
        datasource: string
            Like: maxcompute://ak:[email protected]/api?
                  curr_project=test_ci&scheme=http
        original_sql: string
            Original "TO PREDICT" statement.
        select: string
            SQL statement to get prediction data set.
        model: string
            Model to load and do prediction.
        label_name: string
            Name of the label column, if not exist in select.
        pred_params: dict
            Params for training, crossponding to WITH clause.
        result_table: string
            The table name to save prediction result.
        user: string
            A string to identify the user, used to load model from the user's
            directory.
    """
    params = dict(locals())

    # format resultTable name to "db.table" to let the codegen form a
    # submitting argument of format "odps://project/tables/table_name"
    project = table_ops.get_project(datasource)
    if result_table.count(".") == 0:
        result_table = "%s.%s" % (project, result_table)

    model_metas = Model.load_metadata_from_db(datasource, model)
    model_type = model_metas.get_type()
    estimator = model_metas.get_meta("class_name")
    setup_predict_entry(params, model_type)

    train_label = model_metas.get_meta("label")
    if train_label is not None:
        train_label_desc = train_label.get_field_desc()[0]
    else:
        train_label_desc = None

    if pred_params is None:
        extra_result_cols = []
    else:
        extra_result_cols = pred_params.get("predict.extra_outputs", "")
        extra_result_cols = [
            c.strip() for c in extra_result_cols.split(",") if c.strip()
        ]

    with db.connect_with_data_source(datasource) as conn:
        result_column_names, train_label_idx = create_predict_table(
            conn, select, result_table, train_label_desc, label_name,
            extra_result_cols)

    oss_model_path = pai_model.get_oss_model_save_path(datasource,
                                                       model,
                                                       user=user)

    # TODO(typhoonzero): Do **NOT** create tmp table when the select statement
    # is like: "SELECT fields,... FROM table"
    with table_ops.create_tmp_tables_guard(select, datasource) as data_table:
        del params["label_name"]
        params["pai_table"] = data_table
        params["result_column_names"] = result_column_names
        params["train_label_idx"] = train_label_idx
        params["extra_result_cols"] = extra_result_cols

        if try_pai_local_run(params, oss_model_path):
            return

        with temp_file.TemporaryDirectory(prefix="sqlflow", dir="/tmp") as cwd:
            prepare_archive(cwd, estimator, oss_model_path, params)

            cmd = get_pai_predict_cmd(
                datasource, project, oss_model_path, model, data_table,
                result_table, model_type, pred_params,
                "file://" + os.path.join(cwd, JOB_ARCHIVE_FILE),
                "file://" + os.path.join(cwd, PARAMS_FILE))
            submit_pai_task(cmd, datasource)
コード例 #13
0
ファイル: explain.py プロジェクト: zlb1028/sqlflow
def explain_step(datasource,
                 select,
                 explainer,
                 model_params,
                 result_table,
                 model,
                 pai_table=None,
                 oss_dest=None,
                 oss_ak=None,
                 oss_sk=None,
                 oss_endpoint=None,
                 oss_bucket_name=None):
    """
    Do explanation to a trained TensorFlow model.

    Args:
        datasource (str): the database connection string.
        select (str): the input data to predict.
        explainer (str): the explainer to explain the model.
                         Not used in TensorFlow models.
        model_params (dict): the parameters for evaluation.
        result_table (str): the output data table.
        model (Model|str): the model object or where to load the model.

    Returns:
        None.
    """
    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    plot_type = model_params.get("summary.plot_type", "bar")

    train_attributes = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    train_label_desc = model.get_meta("label").get_field_desc()[0]
    estimator_string = model.get_meta("class_name")
    save = "model_save"

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    feature_columns = compile_ir_feature_columns(train_fc_map,
                                                 model.get_type())

    label_name = model_params.get("label_col", train_label_desc.name)
    train_label_desc.name = label_name
    label_meta = train_label_desc.to_dict(dtype_to_string=True)

    if pai_table:
        assert oss_dest, "oss_dest must be given when submit to PAI"
    else:
        assert oss_dest is None

    if os.environ.get('DISPLAY', '') == '':
        print('no display found. Using non-interactive Agg backend')
        matplotlib.use('Agg')

    _explain(datasource=datasource,
             estimator_string=estimator_string,
             select=select,
             feature_columns=feature_columns,
             feature_column_names=feature_column_names,
             feature_metas=feature_metas,
             label_meta=label_meta,
             model_params=train_attributes,
             save=save,
             pai_table=pai_table,
             plot_type=plot_type,
             result_table=result_table,
             oss_dest=oss_dest,
             oss_ak=oss_ak,
             oss_sk=oss_sk,
             oss_endpoint=oss_endpoint,
             oss_bucket_name=oss_bucket_name)

    print_image_as_base64_html('summary.png')
コード例 #14
0
def submit_pai_explain(datasource,
                       original_sql,
                       select,
                       model,
                       model_params,
                       result_table,
                       explainer="TreeExplainer",
                       user=""):
    """This function pack need params and resource to a tarball
    and submit a explain task to PAI

    Args:
        datasource: string
            Like: maxcompute://ak:[email protected]/api?
                  curr_project=test_ci&scheme=http
        original_sql: string
            Original "TO PREDICT" statement.
        select: string
            SQL statement to get prediction data set.
        model: string
            Model to load and do prediction.
        model_params: dict
            Params for training, crossponding to WITH clause.
        result_table: string
            The table name to save prediction result.
        user: string
            A string to identify the user, used to load model from the user's
            directory.
    """
    params = dict(locals())

    # format resultTable name to "db.table" to let the codegen form a
    # submitting argument of format "odps://project/tables/table_name"
    project = table_ops.get_project(datasource)
    if result_table:
        if result_table.count(".") == 0:
            result_table = "%s.%s" % (project, result_table)
        params["result_table"] = result_table

    # used to save the explain image
    timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    params["oss_dest"] = "explain_images/%s/%s" % (user, timestamp)
    add_env_to_params(params, "SQLFLOW_OSS_AK", "oss_ak")
    add_env_to_params(params, "SQLFLOW_OSS_SK", "oss_sk")
    add_env_to_params(params, "SQLFLOW_OSS_ALISA_ENDPOINT", "oss_endpoint")
    add_env_to_params(params, "SQLFLOW_OSS_ALISA_BUCKET", "oss_bucket_name")

    meta = Model.load_metadata_from_db(datasource, model)
    model_type = meta.get_type()
    estimator = meta.get_meta("class_name")
    label_name = model_params.get("label_col")
    if label_name is None:
        label_column = meta.get_meta("label")
        if label_column is not None:
            label_name = label_column.get_field_desc()[0].name

    setup_explain_entry(params, model_type)

    oss_model_path = pai_model.get_oss_model_save_path(datasource,
                                                       model,
                                                       user=user)

    # TODO(typhoonzero): Do **NOT** create tmp table when the select statement
    # is like: "SELECT fields,... FROM table"
    with table_ops.create_tmp_tables_guard(select, datasource) as data_table:
        params["pai_table"] = data_table

        # Create explain result table
        if result_table:
            conn = db.connect_with_data_source(datasource)
            feature_columns = meta.get_meta("features")
            estimator_string = meta.get_meta("class_name")
            field_descs = get_ordered_field_descs(feature_columns)
            feature_column_names = [fd.name for fd in field_descs]
            create_explain_table(conn, meta.get_type(), explainer,
                                 estimator_string, result_table,
                                 feature_column_names)
            conn.close()

        if not try_pai_local_run(params, oss_model_path):
            with temp_file.TemporaryDirectory(prefix="sqlflow",
                                              dir="/tmp") as cwd:
                prepare_archive(cwd, estimator, oss_model_path, params)
                cmd = get_pai_explain_cmd(
                    datasource, project, oss_model_path, model, data_table,
                    result_table, model_type, model_params,
                    "file://" + os.path.join(cwd, JOB_ARCHIVE_FILE),
                    "file://" + os.path.join(cwd, PARAMS_FILE), label_name)
                submit_pai_task(cmd, datasource)

    if result_table:
        print('Saved result into: {}'.format(result_table))
    else:
        print_oss_image(params["oss_dest"], params["oss_ak"], params["oss_sk"],
                        params["oss_endpoint"], params["oss_bucket_name"])
コード例 #15
0
def evaluate(datasource,
             select,
             result_table,
             load,
             pred_label_name=None,
             validation_metrics=["accuracy_score"]):
    """
    Do evaluation to a trained XGBoost model.

    Args:
        datasource (str): the database connection string.
        select (str): the input data to predict.
        result_table (str): the output data table.
        load (str): where the trained model stores.
        pred_label_name (str): the label column name.
        validation_metrics (list[str]): the evaluation metric names.

    Returns:
        None.
    """
    model = Model.load_from_db(datasource, load)
    model_params = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    train_label_desc = model.get_meta("label").get_field_desc()[0]
    if pred_label_name:
        train_label_desc.name = pred_label_name

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict()) for fd in field_descs])

    # NOTE: in the current implementation, we are generating a transform_fn
    # from the COLUMN clause. The transform_fn is executed during the process
    # of dumping the original data into DMatrix SVM file.
    compiled_fc = compile_ir_feature_columns(train_fc_map, model.get_type())
    transform_fn = xgboost_extended.feature_column.ComposedColumnTransformer(
        feature_column_names, *compiled_fc["feature_columns"])

    bst = xgb.Booster()
    bst.load_model("my_model")
    conn = db.connect_with_data_source(datasource)

    result_column_names = _create_evaluate_table(conn, result_table,
                                                 validation_metrics)

    with temp_file.TemporaryDirectory() as tmp_dir_name:
        pred_fn = os.path.join(tmp_dir_name, "predict.txt")

        dpred = xgb_dataset(datasource=datasource,
                            fn=pred_fn,
                            dataset_sql=select,
                            feature_metas=feature_metas,
                            feature_column_names=feature_column_names,
                            label_meta=train_label_desc.to_dict(),
                            cache=True,
                            batch_size=10000,
                            transform_fn=transform_fn)

        for i, pred_dmatrix in enumerate(dpred):
            feature_file_name = pred_fn + "_%d" % i
            preds = _calc_predict_result(bst, pred_dmatrix, model_params)
            _store_evaluate_result(preds, feature_file_name, train_label_desc,
                                   result_table, result_column_names,
                                   validation_metrics, conn)

    conn.close()