コード例 #1
0
    architecture = opts['architecture']
    print('[SETUP] Ran with architecture "{}"'.format(architecture))

    if architecture == 'Artistic':
        colorizer = get_image_colorizer(artistic=True)
    elif architecture == 'Stable':
        colorizer = get_image_colorizer(artistic=False)
    else:
        colorizer = get_video_colorizer().vis
    return colorizer


@runway.command(name='generate',
                inputs={
                    'image':
                    image(description='Image to colorize'),
                    'render_factor':
                    number(description=render_factor_description,
                           min=7,
                           max=45,
                           step=1,
                           default=35)
                },
                outputs={'image': image(description='Colorized image')})
def generate(model, args):
    render_factor = args['render_factor']
    print('[GENERATE] Ran with render_factor "{}"'.format(render_factor))

    orig_image = args['image'].convert('RGB')
    model._clean_mem()
    output_image = model.filter.filter(orig_image,
コード例 #2
0
import runway
from runway.data_types import number, text, image, array, image_bounding_box
from example_model import FaceTracker

setup_options = {}


@runway.setup(options=setup_options)
def setup(opts):
    model = FaceTracker(opts)
    return model


@runway.command(
    name='find_faces',
    inputs={'input': image(description="The input image to analyze")},
    outputs={
        'ids':
        array(number, description="IDs of found faces"),
        'boxes':
        array(image_bounding_box, description="bounding boxes of found faces")
    },
    description='Look for faces in the image')
def find_faces(model, args):

    output = model.process(args['input'])

    return {
        'ids': [o["index"] for o in output],
        'boxes': [o["box"] for o in output]
    }
コード例 #3
0
# supported configs. The setup function should return the model ready to be
# used.
setup_options = {
    'truncation': number(min=1, max=10, step=1, default=5, description='Example input.'),
    'seed': number(min=0, max=1000000, description='A seed used to initialize the model.')
}
@runway.setup(options=setup_options)
def setup(opts):
    msg = '[SETUP] Ran with options: seed = {}, truncation = {}'
    print(msg.format(opts['seed'], opts['truncation']))
    model = ExampleModel(opts)
    return model

inputs = {
    # 'file': file(extension=".zip"),
    'image': image(),
    'model': category(choices=["none", "random", "color", "bit/m-r101x1", "vgg16"], default="color", description='Cluster model.'),
    'slices': number(min=5, max=30, step=5, default=10, description='Number of slices.'),
    'vgg_depth': number(min=1, max=8, step=1, default=7, description='VGG Feature Depth'),
}

# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='generate',
                inputs=inputs,
                outputs={ 'image': image(width=512, height=512), 'info': text("hello") },
                description='Generates a red square when the input text input is "red".')
def generate(model, args):
    print('[GENERATE] Ran with image "{}"'.format(args['image']))
    # Generate a PIL or Numpy image based on the input caption, and return it
コード例 #4
0
import runway
from runway.data_types import category, vector, image
from your_code import model


@runway.setup
def setup():
    return model()


sample_inputs = {
    "z": vector(length=512),
    "category": category(choices=["day", "night"])
}

sample_outputs = {"image": image(width=1024, height=1024)}


@runway.command("sample", inputs=sample_inputs, outputs=sample_outputs)
def sample(model, inputs):
    # The parameters passed to a function decorated by @runway.command() are:
    #   1. The return value of a function wrapped by @runway.setup(), usually a model
    #   2. The inputs sent with the HTTP request to the /<command_name> endpoint,
    #      as defined by the inputs keyword argument delivered to @runway.command().
    img = model.sample(z=inputs["z"], category=inputs["category"])
    return {"image": img}
コード例 #5
0
    vgg.to(device)
    decoder.to(device)

    content_tf = test_transform(0, False)
    style_tf = test_transform(0, False)
    return {
      'vgg': vgg,
      'decoder': decoder,
      'content_tf': content_tf,
      'style_tf': style_tf,
    }


@runway.command(name='generate',
                inputs={
                  'content_image': image(description='Content Image'),
                  'style_image': image(description='Style Image'),
                  'preserve_color': boolean(description='Preserve content image color'),
                  'alpha': number(description='Controls the degree of stylization',
                                                 min=0, max=1, step=0.01, default=1)
                },
                outputs={ 'image': image(description='Output image') })
def generate(model, args):
    content_image = args['content_image'].convert('RGB')
    style_image = args['style_image'].convert('RGB')
    preserve_color = args['preserve_color']
    alpha = args['alpha']
    print('[GENERATE] Ran with preserve_color "{}". alpha "{}"'.format(preserve_color, alpha))

    vgg = model['vgg']
    decoder = model['decoder']
コード例 #6
0
           max=1.0,
           step=.1,
           description='Minimum scaling amount'),
    'transform_max':
    number(default=0.5,
           min=0.0,
           max=1.0,
           step=.1,
           description='Maximum scaling amount')
}


@runway.command(
    name='generate',
    inputs=input_options,
    outputs={'image': image()},
    description=
    'Use Lucid to visualize the layers and neurons of a specific ML network.')
def generate(model, args):
    print('[GENERATE] Ran with layer {} and neuron {}'.format(
        args['layer'], args['neuron']))

    layer_id = args['layer'].split(' ')[0]
    layer_neuron = '{}:{}'.format(layer_id, args['neuron'])

    s = int(args['size'])
    min_scale = args['transform_min']
    max_scale = args['transform_max']
    scale_offset = (max_scale - min_scale) * 10

    # https://github.com/tensorflow/lucid/issues/148
コード例 #7
0
# Copyright (c) 2021 Justin Pinkney

import runway
from runway.data_types import category, vector, image, number

import editor
import face_detection

edit_controls = {k: number(description=k, default=0, min=-20, max=20) for k in editor.edits.keys()}
inputs = {'original': image()}
inputs.update(edit_controls)
outputs = { 'image': image() }


@runway.setup(options={
        'checkpoint': runway.file(extension='.pt', default="psp_ffhq_encode.pt"),
        'face_detector': runway.file(extension='.dat', default="shape_predictor_5_face_landmarks.dat"),
    })
def setup(opts):
    checkpoint_path = opts['checkpoint']
    face_detection.MODEL_PATH = opts['face_detector']

    encoder, decoder, latent_avg = editor.load_model(checkpoint_path)

    manipulator = editor.manipulate_model(decoder)
    manipulator.edits = {editor.idx_dict[v[0]]: {v[1]: 0} for k, v in editor.edits.items()}

    return encoder, decoder, latent_avg, manipulator


@runway.command('encode', inputs=inputs, outputs=outputs, description='Generate an image.')
コード例 #8
0
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

preprocess = transforms.Compose([
    transforms.Scale(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(), normalize
])


@runway.setup
def setup():
    return models.squeezenet1_1(pretrained=True)


@runway.command('classify',
                inputs={'photo': image()},
                outputs={'label': text()})
def classify(model, input):
    img = input['photo']
    img_tensor = preprocess(img)
    img_tensor.unsqueeze_(0)
    img_variable = Variable(img_tensor)
    fc_out = model(img_variable)
    label = labels[str(fc_out.data.numpy().argmax())]
    return {'label': label}


if __name__ == '__main__':
    runway.run()
コード例 #9
0
        p_pro = GIFSmoothing(r=35, eps=0.001)
    else:
        from photo_smooth import Propagator
        p_pro = Propagator()
    if torch.cuda.is_available():
        p_wct.cuda(0)

    return {
        'p_wct': p_wct,
        'p_pro': p_pro,
    }


@runway.command(name='generate',
                inputs={
                    'content': image(),
                    'style': image()
                },
                outputs={'image': image()})
def generate(model, args):
    p_wct = model['p_wct']
    p_pro = model['p_pro']

    # TODO: Use image directly instead of saving to path
    content_image_path = '/tmp/content.png'
    style_image_path = '/tmp/style.png'
    args['content'].save(content_image_path, 'PNG')
    args['style'].save(style_image_path, 'PNG')
    output_image_path = '/tmp/output.png'

    process_stylization.stylization(
コード例 #10
0
}


@runway.setup(options=setup_options)
def setup(opts):
    msg = '[SETUP] Ran with options: seed = {}, truncation = {}'
    print(msg.format(opts['seed'], opts['truncation']))
    model = FaceTracker(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='generate',
                inputs={'input': image()},
                outputs={
                    'ids': array(item_type=number),
                    'boxes': array(image_bounding_box)
                },
                description='Sends face ids found.')
def generate(model, args):
    faces = model.process(args['input'])
    return {
        'ids': [f["index"] for f in faces],
        'boxes': [f["location"] for f in faces]
    }


if __name__ == '__main__':
    # run the model server using the default network interface and ports,
コード例 #11
0
        mdl = Pix2Pix256RGBA()
        return mdl




# Generate Image
########################################

def generate_from_PIL_img(mdl, img_pil):
    img_ten_in = ImgUtil.imgpil_to_imgten(img_pil) # converts a PIL image to a normalized tensor of dimension [1,sz,sz,3]
    img_ten_out = mdl.generator(img_ten_in, training=True)
    return( ImgUtil.imgten_to_imgpil(img_ten_out) ) # converts a normalized tensor of dimension [1,sz,sz,3] to a PIL image

generate_command_inputs = {
  'image_in': image(width=256, height=256)
}
generate_command_outputs = {
  'image_out': image(width=256, height=256, channels=4)
}
@runway.command(name='generate',
                inputs=generate_command_inputs,
                outputs=generate_command_outputs,
                description='this thing does a thing')
def generate(model, args):
    print('[GENERATE]\n image_in: "{}"'.format(args['image_in']))
    output_image = args['image_in']
    size_in = args['image_in'].size

    if model.generator:
        with torch.no_grad():
コード例 #12
0
labels = json.load(open('labels.json'))

normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)

preprocess = transforms.Compose([
   transforms.Scale(256),
   transforms.CenterCrop(224),
   transforms.ToTensor(),
   normalize
])

@runway.setup
def setup():
  return models.squeezenet1_1(pretrained=True)

@runway.command('classify', inputs={'photo': image() }, outputs={'label': text() })
def classify(model, inputs):
    img = inputs['photo']
    img_tensor = preprocess(img)
    img_tensor.unsqueeze_(0)
    img_variable = Variable(img_tensor)
    fc_out = model(img_variable)
    label = labels[str(fc_out.data.numpy().argmax())]
    return {'label': label}

if __name__ == '__main__':
    runway.run()
コード例 #13
0
# Check https://docs.runwayapp.ai/#/python-sdk to see a complete list of
# supported configs. The setup function should return the model ready to be
# used.

setup_options = {'checkpoint': runway.file(extension='.h5')}

@runway.setup(options=setup_options)
def setup(opts):
    model = Pix2Pix(opts)
    return model

# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='generate',
                inputs={ 'input_image': image() },
                outputs={ 'output_image': image() },
                description='Generates a predicted image based on the given input image.')

def generate(model, args):
    # Generate an output image based on the input image, and return it
    output_image = model.run_on_input(args['input_image'])
    return {
        'output_image': output_image
    }

if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    port=8000
    print(f"Running on port {port}..")
コード例 #14
0
from runway.data_types import number, text, image
from cartoonize_model import CartoonizeModel

setup_options = {
    'model_path': text(description='Model path. Empty string = default model.'),
}
@runway.setup(options=setup_options)
def setup(opts):
    model = CartoonizeModel({
        'model_path': opts['model_path'] or 'WBCartoonization/test_code/saved_models'
    })
    return model

@runway.command(name='cartoonize',
        inputs={
            'image': image(),
            'resize': number(default=50, min=0, max=100, step=1)
        },
        outputs={
            'image': image()
        },
        description='Cartoonize.')
def cartoonize(model, args):
    output_image = model.cartoonize(args['image'], {
        'resize': args['resize'] / 100
    })
    return {
        'image': output_image
    }

if __name__ == '__main__':
コード例 #15
0
import runway
from runway.data_types import image

inputs = {"image": image(width=512, height=512)}
outputs = {"image": image(width=512, height=512)}


@runway.command("style_transfer", inputs=inputs, outputs=outputs)
def style_transfer(result_of_setup, args):
    # perform some transformation to the image, and then return it as a
    # PIL image or numpy array
    img = do_style_transfer(args["image"])
    return {"image": img}


runway.run()
# curl -H "content-type: application/json" -d '{ "image": "..." }' http://localhost:9000/batch_process
    "inception4b": model.inception4b,
    "inception4c": model.inception4c,
    "inception4d": model.inception4d,
    "inception4e": model.inception4e,
    "inception5a": model.inception5a,
    "inception5b": model.inception5b,
}

config = {
    "image_path": None,
    "layers": [model.inception4b],
    "custom_func": [None]
}

input_dict = {
    "image": image(),
    "octave_scale": number(step=0.05, min=1.0, max=1.7, default=1.2),
    "num_octaves": number(step=1, min=1, max=25, default=5),
    "iterations": number(step=1, min=1, max=100, default=14),
    "lr": number(step=1e-4, min=1e-9, max=1e-1, default=0.05),
    "max_rotation": number(step=0.1, min=0.0, max=1.5, default=0.9),
    "layer_index": number(step=1, min=0, max=len(layers), default=0),
    "channel_index": number(step=1, min=-1, max=511, default=0),
    "invert_mask": boolean(default=False)
}


@runway.setup
def setup():
    dreamy_boi = dreamer(model)
    return dreamy_boi
コード例 #17
0
        runway.category(description="Pretrained checkpoints to use.",
                        choices=['skip'],
                        default='skip')
    })
def setup(opts):
    msg = '[SETUP] Running Model'
    print(msg)
    model = matcap_model.get_generator()
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='generate',
                inputs={'patch': image(width=16, height=16)},
                outputs={'image': image(width=16, height=16)})
def generate(model, args):
    # Generate a PIL or Numpy image based on the input caption, and return it
    img = args['patch']

    img_tensor = torch.tensor(numpy.array(img)).float() / 256.0
    img = img_tensor
    hacky_workaround = []
    hacky_workaround.append(img_tensor)
    for i in range(99):
        hacky_workaround.append(torch.zeros(16, 16, 3) + 0.2)
    noise = torch.stack(hacky_workaround).float()
    noise = noise.unsqueeze(0).view(100, -1).float()

    input_image = Image.open("./input.png")
コード例 #18
0
ファイル: serve.py プロジェクト: rlmp89/ar_cutpaste_runwayml
def sample(model, img):
    # Ensure imaize is under 1024
    if img.size[0] > 1024 or img.size[1] > 1024:
        img.thumbnail((1024, 1024))
    return model.run(np.array(img)).convert("L")


@runway.setup(options={"onnx": number(default=0)})
def setup(opts):
    import basnet
    return basnet


@runway.command(name='paste',
                inputs={'image': image},
                outputs={'image': image(channels=4)})
def paste(model, inputs):
    start = time.time()
    logging.info('generating mask...')
    img = inputs['image']
    if img.size[0] > 1024 or img.size[1] > 1024:
        img.thumbnail((1024, 1024))
    mask = sample(model, img)
    logging.info(' > compositing final image...')
    ref = inputs['image']
    empty = Image.new("RGBA", ref.size, 0)
    res = Image.composite(ref, empty, mask.resize(ref.size))
    # Print stats
    logging.info(f'Completed in {time.time() - start:.2f}s')
    return res
コード例 #19
0
        for softmax in probabilities
    ]
    return {
        'faces': runway_faces,
        'probabilities': probabilities,
        'most_likely_classes': most_likely_classes
    }


classify_description = ("Classify give face image returning probabilities and "
                        "most likely class\n Probabilities correspond to:"
                        f" {', '.join(emotion_classifier.EMOTIONS)}")


@runway.command('classify',
                inputs={'image': image(description="Cropped face image")},
                outputs={
                    'probabilities':
                    vector(length=len(emotion_classifier.EMOTIONS),
                           description="Probabilities of corresponding "
                           "face being each possible class"),
                    'most_likely_class':
                    text(description="Most likely class of face")
                },
                description=classify_description)
def classify(model, inputs):
    """Classify given face image.

    Returns probabilities of face's emotion classification
    and most likely class.
コード例 #20
0
def setup(opts):
    msg = '[SETUP] Ran with options: mode = {}, seed = {}, res = {}'
    print(msg.format(opts['mode'], opts['seed'], opts['resolution']))
    res = opts['resolution']
    model = CPPNModel(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
# sample_inputs = {'z': vector(length=3)}
sample_inputs = {'z1': number(min=-5., max=5., step=0.01, default=.125),
                 'z2': number(min=-5., max=5., step=0.01, default=2.125),
                 'scale': number(min=0.01, max=10, step=0.01, default=1.500)}
sample_outputs = {'image': image(width=res, height=res)}


@runway.command(name='generate', inputs=sample_inputs, outputs=sample_outputs,)
def generate(model, inputs):
    # print('[GENERATE] Ran with caption value "{}"'.format(args['caption']))
    # Generate a PIL or Numpy image based on the input caption, and return it
    output_image = model.run_on_input([inputs['z1'], inputs['z2'], inputs['scale']])
    return {'image': output_image}


if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    runway.run(host='0.0.0.0', port=8000)
コード例 #21
0
from PIL import Image

# Setup the model, initialize weights, set the configs of the model, etc.
# Every model will have a different set of configurations and requirements.
# Check https://docs.runwayapp.ai/#/python-sdk to see a complete list of
# supported configs. The setup function should return the model ready to be
# used.


@runway.setup(options={'models': runway.file(extension='.zip')})
def setup(opts):
    model = Paint_MODEL(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='paint',
                inputs={'input_image': image(width=1024, height=1024)},
                outputs={'output_image': image(width=1024, height=1024)})
def classify(model, args):
    # Generate a PIL or Numpy image based on the input caption, and return it
    output_image = model.paint(args['input_image'])
    return {'output_image': output_image}


if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    runway.run(host='0.0.0.0', port=8000)
コード例 #22
0
@runway.setup(options={'checkpoint': runway.file(extension='.jpg')})
def setup(opts):
    checkpoint_path = opts['checkpoint']
    model = load_model_from_checkpoint(checkpoint_path)
    msg = '[SETUP] Ran with options: seed = {}, truncation = {}'
    print(msg.format(opts['seed'], opts['truncation']))
    model = ExampleModel(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(
    name='generate',
    inputs={'image': image()},
    outputs={'image': image(width=1200, height=1200)},
    description='Generates a red square when the input text input is "red".')
def generate(model, args):
    print('[GENERATE] Ran with caption value "{}"'.format(args['caption']))
    # Generate a PIL or Numpy image based on the input caption, and return it
    output_image = runway.file(args['caption'])
    return {'image': runway.file(args['caption'])}


if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    runway.run(host='0.0.0.0', port=8000)

## Now that the model is running, open a new terminal and give it a command to
コード例 #23
0
import runway
from runway.data_types import category, vector, image
from your_code import model

@runway.setup
def setup():
    return model()

sample_inputs= {
    "z": vector(length=512, description="The seed used to generate an output image."),
    "category": category(choices=["day", "night"])
}

sample_outputs = {
    "image": image(width=1024, height=1024)
}

# Descriptions are used to document each data type and `@runway.command()`; Their values appear
# in the app as tooltips. Writing detailed descriptions for each model option goes a long way
# towards helping users learn how to interact with your model. Write descriptions as full
# sentences.
sample_description = "Generate a new image based on a z-vector and an output style: Day or night."
@runway.command("sample",
                inputs=sample_inputs,
                outputs=sample_outputs,
                description=sample_description)
def sample(model, inputs):
    # The parameters passed to a function decorated by @runway.command() are:
    #   1. The return value of a function wrapped by @runway.setup(), usually a model.
    #   2. The inputs sent with the HTTP request to the /<command_name> endpoint,
    #      as defined by the inputs keyword argument delivered to @runway.command().
コード例 #24
0
# supported configs. The setup function should return the model ready to be
# used.
setup_options = {
    'threshold': number(min=0, max=1, step=0.1, default=0.3),
    'checkpoint': runway.file(extension='.pth'),
    'mode': category(choices=["mask_only", "box_only", "both"], default="both"),
}
@runway.setup(options=setup_options)
def setup(opts):
    model = YOLACT_MODEL(opts)
    return model

# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='detect',
                inputs={ 'input_image': image(width=550, height=550) },
                outputs={ 'output_image': image(width=550, height=550) })

def detect(model, args):
    # Generate a PIL or Numpy image based on the input caption, and return it
    output_image = model.detect(args['input_image'])
    
    return {  
        'output_image': output_image
    }

if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    runway.run(host='0.0.0.0', port=8000)
コード例 #25
0
@runway.setup(options=setup_options)
def setup(opts):
    msg = '[SETUP] Ran with options: seed = {}, truncation = {}'
    print(msg.format(opts['seed'], opts['truncation']))
    model = ExampleModel(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(
    name='generate',
    inputs={'caption': text()},
    outputs={'image': image(width=512, height=512)},
    description='Generates a red square when the input text input is "red".')
def generate(model, args):
    print('[GENERATE] Ran with caption value "{}"'.format(args['caption']))
    # Generate a PIL or Numpy image based on the input caption, and return it
    output_image = model.run_on_input(args['caption'])
    return {'image': output_image}


@runway.command(name='add',
                inputs={
                    'x': number('', 10, 10, 0, 200),
                    'y': number('', 40, 10, 0, 200),
                },
                outputs={'addition': number()},
                description='Adds two numbers.')
コード例 #26
0
@runway.setup(options=setup_options)
def setup(opts):
    model = DeblurHelper(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
COUNT = 0


@runway.command(
    name='generate',
    inputs={'input': image(width=256, height=256)},
    outputs={'image': image(width=256, height=256)},
    description='Generates a red square when the input text input is "red".')
def generate(model, args):
    print('[GENERATE] Ran a new image "{}"'.format(time.time()))

    # Generate deblurred image
    output_image = model.run_on_input(args['input'])
    return {'image': output_image}


if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    runway.run(host='0.0.0.0', port=8000)
コード例 #27
0
import runway
from runway.data_types import image
from image_composition import Image_composition


@runway.setup(options={})
def setup(opts):
    model = Image_composition()
    return model


@runway.command(name='composite',
                inputs={
                    'background': image(channels=4),
                    'foreground': image(channels=4)
                },
                outputs={'composition': image(channels=3)},
                description='Generates a composition of the two input images')
def composite(model, args):
    output_image = model.run_on_input(args['background'], args['foreground'])
    return {'composition': output_image}


if __name__ == '__main__':
    runway.run(host='0.0.0.0', port=9001)
コード例 #28
0
# used.
setup_options = {
    'truncation': number(min=5, max=100, step=1, default=10),
    'seed': number(min=0, max=1000000)
}


@runway.setup(options=setup_options)
def setup(opts):
    msg = '[SETUP] Ran with options: seed = {}, truncation = {}'
    print(msg.format(opts['seed'], opts['truncation']))
    model = ExampleModel(opts)
    return model


# Every model needs to have at least one command. Every command allows to send
# inputs and process outputs. To see a complete list of supported inputs and
# outputs data types: https://sdk.runwayml.com/en/latest/data_types.html
@runway.command(name='classify',
                inputs={'image': image(width=224, height=224)},
                outputs={'class_name': text()})
def classify(model, args):
    # Generate a PIL or Numpy image based on the input caption, and return it
    class_name = model.classify(args['image'])
    return {'class_name': class_name}


if __name__ == '__main__':
    # run the model server using the default network interface and ports,
    # displayed here for convenience
    runway.run(host='0.0.0.0', port=8000)
コード例 #29
0
import runway
from runway.data_types import image
from add_mask import Add_mask


@runway.setup(options={})
def setup(opts):
    model = Add_mask()
    return model


@runway.command(name='generate',
                inputs={
                    'image': image(channels=3),
                    'mask': image(channels=4)
                },
                outputs={'masked_image': image(channels=4)},
                description='Add an alpha mask to an image')
def generate(model, args):
    output_image = model.run_on_input(args['image'], args['mask'])
    return {'masked_image': output_image}


if __name__ == '__main__':
    runway.run(host='0.0.0.0', port=9001)
コード例 #30
0
                            '--name', 'pretrained',
                            '--model', 'test',
                            '--no_dropout']).parse()
    opt.num_threads = 0  # test code only supports num_threads = 1
    opt.batch_size = 1  # test code only supports batch_size = 1
    opt.serial_batches = True  # disable data shuffling; comment this line if results on randomly chosen images are needed.
    opt.no_flip = True  # no flip; comment this line if results on flipped images are needed.
    opt.display_id = -1  # no visdom display; the test code saves the results to a HTML file.
    opt.preprocess = 'none'  # Don't resize to a square
    model = create_model(opt)
    model.setup(opt)
    return {'model': model, 'opt': opt}


@runway.command(name='generate',
                inputs={ 'image': image(description='Input image') },
                outputs={ 'image': image(description='Output image') })
def generate(model, args):
    opt = model['opt']
    model = model['model']

    orig_image = args['image'].convert('RGB')
    orig_size = orig_image.size
    input_nc = opt.output_nc if opt.direction == 'BtoA' else opt.input_nc
    transform = get_transform(opt, grayscale=(input_nc == 1))
    A = transform(orig_image)
    input_obj = {'A': A.unsqueeze(0), 'A_paths': ''}

    model.set_input(input_obj)
    model.test()
    visuals = model.get_current_visuals()