def run_svm_inference(self, test, w): logger.info('running inference on: {}'.format(test)) outdir = self.dir_inf + test if not os.path.isdir(outdir): os.makedirs(outdir) ## segment test image with trained w def wwf(im, _w): ''' meta weight function''' data = 0 for iwf, wf in enumerate(self.weight_functions.values()): ij, _data = wf(im) data += _w[iwf] * _data return ij, data ## load images and ground truth file_seg = self.dir_reg + test + 'seg.hdr' file_im = self.dir_reg + test + 'gray.hdr' im = io_analyze.load(file_im) seg = io_analyze.load(file_seg) seg.flat[~np.in1d(seg.ravel(), self.labelset)] = self.labelset[0] ## save image im = im / np.std(im) # normalize image by variance ## prior anchor_api = BaseAnchorAPI( self.prior, anchor_weight=w[-1], ) sol, y = rwsegment.segment(im, anchor_api, seeds=self.seeds, weight_function=lambda im: wwf(im, w), **self.rwparams_inf) np.save(outdir + 'y.test.npy', y) io_analyze.save(outdir + 'sol.test.hdr', sol.astype(np.int32)) ## compute Dice coefficient dice = compute_dice_coef(sol, seg, labelset=self.labelset) np.savetxt(outdir + 'dice.test.txt', np.c_[dice.keys(), dice.values()], fmt='%d %.8f') ## inference compare with gold standard dice_gold = np.loadtxt(outdir + 'dice.gold.txt') y_gold = np.load(outdir + 'y.gold.npy') sol_gold = io_analyze.load(outdir + 'sol.gold.hdr') np.testing.assert_allclose(dice.values(), dict(dice_gold).values(), err_msg='FAIL: dice coef mismatch', atol=1e-8) np.testing.assert_allclose(y, y_gold, err_msg='FAIL: y mismatch') np.testing.assert_equal(sol, sol_gold, err_msg='FAIL: sol mismatch') print 'PASS: inference tests'
def compute_exact_aci(self, w, x, z, y0, **kwargs): islices = kwargs.pop('islices', None) iimask = kwargs.pop('iimask', None) imask = kwargs.pop('imask', None) if islices is not None: seeds = self.seeds[islices] mask = [ self.immask[islices].ravel() for i in range(len(self.labelset)) ] prior = { 'data': np.asarray(self.prior['data'])[:, iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:, iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] else: mask = self.mask seeds = self.seeds prior = self.prior weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## combine all prior models anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], image=x, ) ## annotation consistent inference y = rwsegment.segment( x, anchor_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], ground_truth=z, ground_truth_init=y0, #laplacian_label_weights=, **self.rwparams) return y
def compute_exact_aci(self,w,x,z,y0,**kwargs): islices = kwargs.pop('islices',None) iimask = kwargs.pop('iimask',None) imask = kwargs.pop('imask',None) if islices is not None: seeds = self.seeds[islices] mask = [self.immask[islices].ravel() for i in range(len(self.labelset))] prior = { 'data': np.asarray(self.prior['data'])[:,iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:,iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] else: mask = self.mask seeds = self.seeds prior = self.prior weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## combine all prior models anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], image=x, ) ## annotation consistent inference y = rwsegment.segment( x, anchor_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], ground_truth=z, ground_truth_init=y0, #laplacian_label_weights=, **self.rwparams ) return y
def run_svm_inference(self,test,w, test_dir): logger.info('running inference on: {}'.format(test)) ## normalize w # w = w / np.sqrt(np.dot(w,w)) strw = ' '.join('{:.3}'.format(val) for val in np.asarray(w)*self.psi_scale) logger.debug('scaled w=[{}]'.format(strw)) weights_laplacians = np.asarray(w)[self.indices_laplacians] weights_laplacians_h = np.asarray(self.hand_tuned_w)[self.indices_laplacians] weights_priors = np.asarray(w)[self.indices_priors] weights_priors_h = np.asarray(self.hand_tuned_w)[self.indices_priors] ## segment test image with trained w ''' def meta_weight_functions(im,i,j,_w): data = 0 for iwf,wf in enumerate(self.laplacian_functions): _data = wf(im,i,j) data += _w[iwf]*_data return data weight_function = lambda im: meta_weight_functions(im,i,j,weights_laplacians) weight_function_h = lambda im: meta_weight_functions(im,i,j,weights_laplacians_h) ''' weight_function = MetaLaplacianFunction( weights_laplacians, self.laplacian_functions) weight_function_h = MetaLaplacianFunction( weights_laplacians_h, self.laplacian_functions) ## load images and ground truth file_seg = self.dir_reg + test + 'seg.hdr' file_im = self.dir_reg + test + 'gray.hdr' im = io_analyze.load(file_im) seg = io_analyze.load(file_seg) seg.flat[~np.in1d(seg.ravel(),self.labelset)] = self.labelset[0] nim = im/np.std(im) # normalize image by std ## test training data ? inference_train = True if inference_train: train_ims, train_segs, train_metas = self.training_set for tim, tz, tmeta in zip(train_ims, train_segs, train_metas): ## retrieve metadata islices = tmeta.pop('islices',None) imask = tmeta.pop('imask', None) iimask = tmeta.pop('iimask',None) if islices is not None: tseeds = self.seeds[islices] tprior = { 'data': np.asarray(self.prior['data'])[:,iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:,iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: tprior['intensity'] = self.prior['intensity'] else: tseeds = self.seeds tprior = self.prior ## prior tseg = self.labelset[np.argmax(tz, axis=0)].reshape(tim.shape) tanchor_api = MetaAnchor( tprior, self.prior_functions, weights_priors, image=tim, ) tsol,ty = rwsegment.segment( tim, tanchor_api, seeds=tseeds, weight_function=weight_function, **self.rwparams_inf ) ## compute Dice coefficient tdice = compute_dice_coef(tsol, tseg, labelset=self.labelset) logger.info('Dice coefficients for train: \n{}'.format(tdice)) nlabel = len(self.labelset) tflatmask = np.zeros(ty.shape, dtype=bool) tflatmask[:,imask] = True loss0 = loss_functions.ideal_loss(tz,ty,mask=tflatmask) logger.info('Tloss = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(tz,ty,mask=tflatmask) logger.info('SDloss = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(tz,ty,mask=tflatmask) logger.info('LAPloss = {}'.format(loss2)) tanchor_api_h = MetaAnchor( tprior, self.prior_functions, weights_priors_h, image=tim, ) tsol,ty = rwsegment.segment( tim, tanchor_api_h, seeds=tseeds, weight_function=weight_function_h, **self.rwparams_inf ) ## compute Dice coefficient tdice = compute_dice_coef(tsol, tseg, labelset=self.labelset) logger.info('Dice coefficients for train (hand-tuned): \n{}'.format(tdice)) loss0 = loss_functions.ideal_loss(tz,ty,mask=tflatmask) logger.info('Tloss (hand-tuned) = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(tz,ty,mask=tflatmask) logger.info('SDloss (hand-tuned) = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(tz,ty,mask=tflatmask) logger.info('LAPloss (hand-tuned) = {}'.format(loss2)) break ## prior anchor_api = MetaAnchor( self.prior, self.prior_functions, weights_priors, image=nim, ) sol,y = rwsegment.segment( nim, anchor_api, seeds=self.seeds, weight_function=weight_function, **self.rwparams_inf ) ## compute Dice coefficient dice = compute_dice_coef(sol, seg,labelset=self.labelset) logger.info('Dice coefficients: \n{}'.format(dice)) ## objective en_rw = rwsegment.energy_rw( nim, y, seeds=self.seeds,weight_function=weight_function, **self.rwparams_inf) en_anchor = rwsegment.energy_anchor( nim, y, anchor_api, seeds=self.seeds, **self.rwparams_inf) obj = en_rw + en_anchor logger.info('Objective = {:.3}'.format(obj)) ## compute losses z = seg.ravel()==np.c_[self.labelset] mask = self.seeds < 0 flatmask = mask.ravel()*np.ones((len(self.labelset),1)) ## loss 0 : 1 - Dice(y,z) loss0 = loss_functions.ideal_loss(z,y,mask=flatmask) logger.info('Tloss = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(z,y,mask=flatmask) logger.info('SDloss = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(z,y,mask=flatmask) logger.info('LAPloss = {}'.format(loss2)) ## loss4: linear loss loss3 = loss_functions.linear_loss(z,y,mask=flatmask) logger.info('LINloss = {}'.format(loss3)) ## saving if self.debug: pass elif self.isroot: outdir = self.dir_inf + test_dir logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) #io_analyze.save(outdir + 'im.hdr',im.astype(np.int32)) #np.save(outdir + 'y.npy',y) #io_analyze.save(outdir + 'sol.hdr',sol.astype(np.int32)) np.savetxt(outdir + 'objective.txt', [obj]) np.savetxt( outdir + 'dice.txt', np.c_[dice.keys(),dice.values()],fmt='%d %f') f = open(outdir + 'losses.txt', 'w') f.write('ideal_loss\t{}\n'.format(loss0)) f.write('anchor_loss\t{}\n'.format(loss1)) f.write('laplacian_loss\t{}\n'.format(loss2)) f.close()
def compute_approximate_aci(self, w,x,z,y0,**kwargs): logger.info("using approximate aci (Danny's)") islices = kwargs.pop('islices',None) imask = kwargs.pop('imask',None) iimask = kwargs.pop('iimask',None) if islices is not None: seeds = self.seeds[islices] mask = [self.immask[islices].ravel() for i in range(len(self.labelset))] prior = { 'data': np.asarray(self.prior['data'])[:,iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:,iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] else: mask = self.mask seeds = self.seeds prior = self.prior weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## combine all prior models anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], image=x, ) class GroundTruthAnchor(object): def __init__(self, anchor_api, gt, gt_weights): self.anchor_api = anchor_api self.gt = gt self.gt_weights = gt_weights def get_labelset(self): return self.anchor_api.get_labelset() def get_anchor_and_weights(self, D, indices): anchor, weights = self.anchor_api.get_anchor_and_weights(D,indices) gt_weights = self.gt_weights[:,indices] gt = self.gt[:,indices] new_weights = weights + gt_weights new_anchor = (anchor * weights + gt*gt_weights) / new_weights return new_anchor, new_weights self.approx_aci_maxiter = 200 self.approx_aci_maxstep = 1e-2 z_weights = np.zeros(np.asarray(z).shape) z_label = np.argmax(z,axis=0) for i in range(self.approx_aci_maxiter): logger.debug("approx aci, iter={}".format(i)) ## add ground truth to anchor api modified_api = GroundTruthAnchor(anchor_api, z, z_weights) ## inference y_ = rwsegment.segment( x, modified_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], **self.rwparams ) ## loss #loss = self.compute_loss(z,y_, islices=islices) loss = loss_functions.ideal_loss(z,y_,mask=mask) logger.debug('loss = {}'.format(loss)) if loss < 1e-8: break ## uptade weights delta = np.max(y_ - y_[z_label, np.arange(y_.shape[1])], axis=0) delta = np.clip(delta, 0, self.approx_aci_maxstep) z_weights += delta return y_
def compute_approximate_aci2(self, w,x,z,y0,**kwargs): logger.info('using approximate aci') islices = kwargs.pop('islices',None) imask = kwargs.pop('imask',None) iimask = kwargs.pop('iimask',None) if islices is not None: seeds = self.seeds[islices] mask = [self.immask[islices].ravel() for i in range(len(self.labelset))] prior = { 'data': np.asarray(self.prior['data'])[:,iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:,iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] else: mask = self.mask seeds = self.seeds prior = self.prior weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## combine all prior models anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], image=x, ) ## unconstrained inference y_ = rwsegment.segment( x, anchor_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], #laplacian_label_weights=, **self.rwparams ) ## fix correct labels gt = np.argmax(z,axis=0) icorrect = np.argmax(y_,axis=0)==gt seeds_correct = -np.ones(seeds.shape, dtype=int) seeds_correct.flat[icorrect] = self.labelset[gt[icorrect]] ## annotation consistent inference #import ipdb; ipdb.set_trace() y = rwsegment.segment( x, anchor_api, seeds=seeds_correct, weight_function=weight_function, return_arguments=['y'], ground_truth=z, ground_truth_init=y0, seeds_prob=y_, #laplacian_label_weights=, **self.rwparams ) y[:,icorrect] = y_[:,icorrect] #import ipdb; ipdb.set_trace() return y
def full_lai(self, w,x,z, switch_loss=False, iter=-1, **kwargs): ''' full Loss Augmented Inference y_ = arg min <w|-psi(x,y_)> - loss(y,y_) ''' if np.max(np.abs(w)) < 1e-10: # if w=0, return z_tilde y_ = np.random.random((len(z),len(z[0]))) y_[np.argmax(z, axis=0), np.arange(len(z[0]))] = 0 y_ = y_ /np.sum(y_,axis=0) return y_ islices = kwargs.pop('islices',None) imask = kwargs.pop('imask',None) iimask = kwargs.pop('iimask',None) if islices is not None: im = x seeds = self.seeds[islices] mask = [self.immask[islices].ravel() for i in range(len(self.labelset))] prior = { 'data': np.asarray(self.prior['data'])[:,iimask], 'imask':imask, 'variance': np.asarray(self.prior['variance'])[:,iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] seg = z else: im = x mask = self.mask seeds = self.seeds prior = self.prior seg = z ## combine all weight functions weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## loss type addlin = None loss = None loss_weight = None L_loss = None loss_type = self.loss_type if loss_type in ['ideal', 'none']: pass elif loss_type=='squareddiff': loss, loss_weight = loss_functions.compute_loss_anchor(seg, mask=mask) loss_weight *= self.loss_factor elif loss_type=='laplacian': L_loss = - loss_functions.compute_loss_laplacian(seg, mask=mask) *\ self.loss_factor elif loss_type=='linear': addlin, linw = loss_functions.compute_loss_linear(seg, mask=mask) addlin *= linw * self.loss_factor else: raise Exception('did not recognize loss type {}'.format(loss_type)) sys.exit(1) ## loss function anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], loss=loss, loss_weight=loss_weight, image=im, ) ## best y_ most different from y y_ = rwsegment.segment( im, anchor_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], additional_laplacian=L_loss, additional_linear=addlin, #laplacian_label_weights=, **self.rwparams ) return y_
def process_sample(self, train, test): outdir = config.dir_work + 'autoseeds/' + config.basis + '/' + train + '/' + test logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) ## get prior from scipy import ndimage segtrain = io_analyze.load(config.dir_reg + test + train + '/regseg.hdr') segtrain.flat[~np.in1d(segtrain, self.labelset)] = self.labelset[0] struct = np.ones((10, ) * segtrain.ndim) mask = ndimage.binary_dilation( segtrain > 0, structure=struct, ).astype(bool) #prior, mask = load_or_compute_prior_and_mask( # test,force_recompute=self.force_recompute_prior) #mask = mask.astype(bool) ## load image file_name = config.dir_reg + test + 'gray.hdr' logger.info('segmenting data: {}'.format(file_name)) im = io_analyze.load(file_name).astype(float) file_gt = config.dir_reg + test + 'seg.hdr' seg = io_analyze.load(file_gt) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## normalize image nim = im / np.std(im) #orient_scores = self.load_or_compute_orientations(train,test, mask=mask) if 1: #not os.path.isfile(outdir + 'points.npy'): from rwsegment import boundary_utils reload(boundary_utils) ## sample points points = boundary_utils.sample_points(im, self.step, mask=mask) points = points[mask[tuple(points.T)]] impoints = np.zeros(im.shape, dtype=int) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ipoints = np.where(impoints.ravel())[0] points = np.argwhere(impoints) np.save(outdir + 'points.npy', points) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ## set unary potentials from prior: array of unary costs nlabel = len(self.labelset) dist = self.distance_to_train(segtrain, points) T = 10.0 prob_pts = np.exp(-(dist / T)**2) / np.c_[np.sum( np.exp(-(dist / T)**2), axis=1)] #prob = np.c_[np.ones(im.size), np.zeros((im.size, nlabel-1))] #prob[mask.ravel(),:] = prior['data'].T #prob_pts = prob[ipoints,:] np.save(outdir + 'prob_points.npy', prob_pts) ## binary potentials ## compute edges edges, edgev, labels = boundary_utils.get_edges(im, points, mask=mask) edges = np.sort(edges, axis=1) np.save(outdir + 'edges.npy', edges) ## get orientation hist orient_scores, hist = self.load_or_compute_orientations(train, test, mask=mask) ##classify edges vecs = points[edges[:, 1]] - points[edges[:, 0]] vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2, axis=1))] scores = self.get_orient_scores(vecs) prob_orient = np.dot(scores, orient_scores) #prob_orient = prob_orient/np.c_[np.sum(prob_orient, axis=1)] np.save(outdir + 'prob_orient.npy', prob_orient) ''' ## load classifier classifier = self.load_or_compute_classifier(train,test, mask=mask) ## extract profiles profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0) ## make features x = boundary_utils.make_features( profiles, size=self.sizex, additional=[dists,edgev,edgev/dists], ) ## classify cl, scores = classifier.classify(x) ## ground truth z = boundary_utils.is_boundary(points, edges, seg) logger.info('non boundary classification: {}%'\ .format(np.sum((np.r_[z]==0)*(np.r_[cl]==0))/float(np.sum(np.r_[z]==0))*100)) logger.info('boundary classification: {}%'\ .format(np.sum((np.r_[z]==1)*(np.r_[cl]==1))/float(np.sum(np.r_[z]==1))*100)) np.save(outdir + 'classified.npy', cl) ## probabilities prob_edges = 1. - scores/np.c_[np.sum(scores, axis=1)] ##save probs np.save(outdir + 'prob_edges.npy',prob_edges) ''' else: points = np.load(outdir + 'points.npy') edges = np.load(outdir + 'edges.npy') cl = np.load(outdir + 'classified.npy') prob_pts = np.load(outdir + 'prob_points.npy') #prob_edges = np.load(outdir + 'prob_edges.npy') prob_orient = np.load(outdir + 'prob_orient.npy') ## make potentials unary = -np.log(prob_pts + 1e-10) #binary = - np.log(prob_edges + 1e-10) #thresh = (prob_orient.shape[1] - 1.0)/prob_orient.shape[1] thresh = (len(self.orients) - 1.0) / len(self.orients) orient_cost = -np.log(np.clip(prob_orient + thresh, 0, 1) + 1e-10) * 100 orient_cost = np.clip(orient_cost, 0, 1e10) #import ipdb; ipdb.set_trace() ## solve MRF: import ipdb ipdb.set_trace() ''' from rwsegment.mrf import fastPD class CostFunction(object): def __init__(self,**kwargs): self.binary = kwargs.pop('binary',0) self.orient_indices = kwargs.pop('orient_indices') self.orient_cost = kwargs.pop('orient_cost') def __call__(self,e,l1,l2): idpair = self.orient_indices[l1,l2] pair_cost = self.orient_cost[e,idpair] cost = (l1!=l2)*pair_cost #return (l1!=l2)*(1-cl[e])*0.1 #return (l1!=l2)*self.binary[e,1]*0.1 #y = l1!=l2 #return self.binary[e, y]*pair_cost print e, l1, l2, cost return cost #sol, en = fastPD.fastPD_callback(unary, edges, cost_function(binary), debug=True) cost_function = CostFunction( #binary=binary, orient_indices=self.orient_indices, orient_cost=orient_cost, ) sol, en = fastPD.fastPD_callback(unary, edges, cost_function, debug=True) ''' wpairs = orient_cost from rwsegment.mrf import trw sol, en = trw.TRW_general(unary, edges, wpairs, niters=1000, verbose=True) labels = self.labelset[sol] imsol = np.ones(im.shape, dtype=np.int32) * 20 imsol[tuple(points.T)] = labels io_analyze.save(outdir + 'imseeds.hdr', imsol) ## classify sol gtlabels = seg[tuple(points.T)] priorlabels = self.labelset[np.argmin(unary, axis=1)] err_prior = 1 - np.sum(gtlabels == priorlabels) / float(len(points)) err = 1 - np.sum(gtlabels == labels) / float(len(points)) logger.info('error in prior sol: {}%'.format(err_prior * 100)) logger.info('error in sol: {}%'.format(err * 100)) import ipdb ipdb.set_trace() ## start segmenting sol, y = rwsegment.segment(nim, seeds=seeds, labelset=self.labelset, weight_function=self.weight_function, **self.params) ## compute Dice coefficient per label dice = compute_dice_coef(sol, seg, labelset=self.labelset) logger.info('Dice: {}'.format(dice)) if not config.debug: io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32)) np.savetxt(outdir + 'dice.txt', np.c_[dice.keys(), dice.values()], fmt='%d %.8f')
def run_svm_inference(self, test, w, test_dir): logger.info('running inference on: {}'.format(test)) ## normalize w # w = w / np.sqrt(np.dot(w,w)) strw = ' '.join('{:.3}'.format(val) for val in np.asarray(w) * self.psi_scale) logger.debug('scaled w=[{}]'.format(strw)) weights_laplacians = np.asarray(w)[self.indices_laplacians] weights_laplacians_h = np.asarray( self.hand_tuned_w)[self.indices_laplacians] weights_priors = np.asarray(w)[self.indices_priors] weights_priors_h = np.asarray(self.hand_tuned_w)[self.indices_priors] ## segment test image with trained w ''' def meta_weight_functions(im,i,j,_w): data = 0 for iwf,wf in enumerate(self.laplacian_functions): _data = wf(im,i,j) data += _w[iwf]*_data return data weight_function = lambda im: meta_weight_functions(im,i,j,weights_laplacians) weight_function_h = lambda im: meta_weight_functions(im,i,j,weights_laplacians_h) ''' weight_function = MetaLaplacianFunction(weights_laplacians, self.laplacian_functions) weight_function_h = MetaLaplacianFunction(weights_laplacians_h, self.laplacian_functions) ## load images and ground truth file_seg = self.dir_reg + test + 'seg.hdr' file_im = self.dir_reg + test + 'gray.hdr' im = io_analyze.load(file_im) seg = io_analyze.load(file_seg) seg.flat[~np.in1d(seg.ravel(), self.labelset)] = self.labelset[0] nim = im / np.std(im) # normalize image by std ## test training data ? inference_train = True if inference_train: train_ims, train_segs, train_metas = self.training_set for tim, tz, tmeta in zip(train_ims, train_segs, train_metas): ## retrieve metadata islices = tmeta.pop('islices', None) imask = tmeta.pop('imask', None) iimask = tmeta.pop('iimask', None) if islices is not None: tseeds = self.seeds[islices] tprior = { 'data': np.asarray(self.prior['data'])[:, iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:, iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: tprior['intensity'] = self.prior['intensity'] else: tseeds = self.seeds tprior = self.prior ## prior tseg = self.labelset[np.argmax(tz, axis=0)].reshape(tim.shape) tanchor_api = MetaAnchor( tprior, self.prior_functions, weights_priors, image=tim, ) tsol, ty = rwsegment.segment(tim, tanchor_api, seeds=tseeds, weight_function=weight_function, **self.rwparams_inf) ## compute Dice coefficient tdice = compute_dice_coef(tsol, tseg, labelset=self.labelset) logger.info('Dice coefficients for train: \n{}'.format(tdice)) nlabel = len(self.labelset) tflatmask = np.zeros(ty.shape, dtype=bool) tflatmask[:, imask] = True loss0 = loss_functions.ideal_loss(tz, ty, mask=tflatmask) logger.info('Tloss = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(tz, ty, mask=tflatmask) logger.info('SDloss = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(tz, ty, mask=tflatmask) logger.info('LAPloss = {}'.format(loss2)) tanchor_api_h = MetaAnchor( tprior, self.prior_functions, weights_priors_h, image=tim, ) tsol, ty = rwsegment.segment(tim, tanchor_api_h, seeds=tseeds, weight_function=weight_function_h, **self.rwparams_inf) ## compute Dice coefficient tdice = compute_dice_coef(tsol, tseg, labelset=self.labelset) logger.info( 'Dice coefficients for train (hand-tuned): \n{}'.format( tdice)) loss0 = loss_functions.ideal_loss(tz, ty, mask=tflatmask) logger.info('Tloss (hand-tuned) = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(tz, ty, mask=tflatmask) logger.info('SDloss (hand-tuned) = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(tz, ty, mask=tflatmask) logger.info('LAPloss (hand-tuned) = {}'.format(loss2)) break ## prior anchor_api = MetaAnchor( self.prior, self.prior_functions, weights_priors, image=nim, ) sol, y = rwsegment.segment(nim, anchor_api, seeds=self.seeds, weight_function=weight_function, **self.rwparams_inf) ## compute Dice coefficient dice = compute_dice_coef(sol, seg, labelset=self.labelset) logger.info('Dice coefficients: \n{}'.format(dice)) ## objective en_rw = rwsegment.energy_rw(nim, y, seeds=self.seeds, weight_function=weight_function, **self.rwparams_inf) en_anchor = rwsegment.energy_anchor(nim, y, anchor_api, seeds=self.seeds, **self.rwparams_inf) obj = en_rw + en_anchor logger.info('Objective = {:.3}'.format(obj)) ## compute losses z = seg.ravel() == np.c_[self.labelset] mask = self.seeds < 0 flatmask = mask.ravel() * np.ones((len(self.labelset), 1)) ## loss 0 : 1 - Dice(y,z) loss0 = loss_functions.ideal_loss(z, y, mask=flatmask) logger.info('Tloss = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(z, y, mask=flatmask) logger.info('SDloss = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(z, y, mask=flatmask) logger.info('LAPloss = {}'.format(loss2)) ## loss4: linear loss loss3 = loss_functions.linear_loss(z, y, mask=flatmask) logger.info('LINloss = {}'.format(loss3)) ## saving if self.debug: pass elif self.isroot: outdir = self.dir_inf + test_dir logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) #io_analyze.save(outdir + 'im.hdr',im.astype(np.int32)) #np.save(outdir + 'y.npy',y) #io_analyze.save(outdir + 'sol.hdr',sol.astype(np.int32)) np.savetxt(outdir + 'objective.txt', [obj]) np.savetxt(outdir + 'dice.txt', np.c_[dice.keys(), dice.values()], fmt='%d %f') f = open(outdir + 'losses.txt', 'w') f.write('ideal_loss\t{}\n'.format(loss0)) f.write('anchor_loss\t{}\n'.format(loss1)) f.write('laplacian_loss\t{}\n'.format(loss2)) f.close()
def run_svm_inference(self,test,w): logger.info('running inference on: {}'.format(test)) outdir = self.dir_inf + test if not os.path.isdir(outdir): os.makedirs(outdir) ## segment test image with trained w def wwf(im,_w): ''' meta weight function''' data = 0 for iwf,wf in enumerate(self.weight_functions.values()): ij,_data = wf(im) data += _w[iwf]*_data return ij, data ## load images and ground truth file_seg = self.dir_reg + test + 'seg.hdr' file_im = self.dir_reg + test + 'gray.hdr' im = io_analyze.load(file_im) seg = io_analyze.load(file_seg) seg.flat[~np.in1d(seg.ravel(),self.labelset)] = self.labelset[0] ## save image im = im/np.std(im) # normalize image by variance ## prior anchor_api = BaseAnchorAPI( self.prior, anchor_weight=w[-1], ) sol,y = rwsegment.segment( im, anchor_api, seeds=self.seeds, weight_function=lambda im: wwf(im, w), **self.rwparams_inf ) np.save(outdir + 'y.test.npy',y) io_analyze.save(outdir + 'sol.test.hdr',sol.astype(np.int32)) ## compute Dice coefficient dice = compute_dice_coef(sol, seg,labelset=self.labelset) np.savetxt( outdir + 'dice.test.txt', np.c_[dice.keys(),dice.values()],fmt='%d %.8f') ## inference compare with gold standard dice_gold = np.loadtxt(outdir + 'dice.gold.txt') y_gold = np.load(outdir + 'y.gold.npy') sol_gold = io_analyze.load(outdir + 'sol.gold.hdr') np.testing.assert_allclose( dice.values(), dict(dice_gold).values(), err_msg='FAIL: dice coef mismatch', atol=1e-8) np.testing.assert_allclose(y, y_gold, err_msg='FAIL: y mismatch') np.testing.assert_equal(sol, sol_gold, err_msg='FAIL: sol mismatch') print 'PASS: inference tests'
def process_sample(self,test,fold=None): ## get prior prior, mask = load_or_compute_prior_and_mask( test, fold=fold, force_recompute=self.force_recompute_prior) seeds = (-1)*mask ## load image file_name = config.dir_reg + test + 'gray.hdr' logger.info('segmenting data: {}'.format(file_name)) im = io_analyze.load(file_name) file_gt = config.dir_reg + test + 'seg.hdr' seg = io_analyze.load(file_gt) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## normalize image nim = im/np.std(im) ## init anchor_api anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=self.prior_weights, image=nim, ) ## start segmenting #import ipdb; ipdb.set_trace() sol,y = rwsegment.segment( nim, anchor_api, seeds=seeds, labelset=self.labelset, weight_function=self.weight_function, **self.params ) ## compute losses z = seg.ravel()==np.c_[self.labelset] flatmask = mask.ravel()*np.ones((len(self.labelset),1)) ## loss 0 : 1 - Dice(y,z) loss0 = loss_functions.ideal_loss(z,y,mask=flatmask) logger.info('Tloss = {}'.format(loss0)) ## loss2: squared difference with ztilde loss1 = loss_functions.anchor_loss(z,y,mask=flatmask) logger.info('SDloss = {}'.format(loss1)) ## loss3: laplacian loss loss2 = loss_functions.laplacian_loss(z,y,mask=flatmask) logger.info('LAPloss = {}'.format(loss2)) ## loss4: linear loss loss3 = loss_functions.linear_loss(z,y,mask=flatmask) logger.info('LINloss = {}'.format(loss3)) ## compute Dice coefficient per label dice = compute_dice_coef(sol, seg,labelset=self.labelset) logger.info('Dice: {}'.format(dice)) if not config.debug: if fold is not None: test_name = 'f{}_{}'.format(fold[0][:2], test) else: test_name = test outdir = config.dir_seg + \ '/{}/{}'.format(self.model_name,test_name) logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) f = open(outdir + 'losses.txt', 'w') f.write('ideal_loss\t{}\n'.format(loss0)) f.write('anchor_loss\t{}\n'.format(loss1)) f.write('laplacian_loss\t{}\n'.format(loss2)) f.close() io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32)) np.savetxt( outdir + 'dice.txt', np.c_[dice.keys(),dice.values()],fmt='%d %.8f')
def process_sample(self,train, test): outdir = config.dir_work + 'autoseeds/' + config.basis + '/' + train + '/' + test logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) ## get prior from scipy import ndimage segtrain = io_analyze.load(config.dir_reg + test + train + '/regseg.hdr') segtrain.flat[~np.in1d(segtrain, self.labelset)] = self.labelset[0] struct = np.ones((10,)*segtrain.ndim) mask = ndimage.binary_dilation( segtrain>0, structure=struct, ).astype(bool) #prior, mask = load_or_compute_prior_and_mask( # test,force_recompute=self.force_recompute_prior) #mask = mask.astype(bool) ## load image file_name = config.dir_reg + test + 'gray.hdr' logger.info('segmenting data: {}'.format(file_name)) im = io_analyze.load(file_name).astype(float) file_gt = config.dir_reg + test + 'seg.hdr' seg = io_analyze.load(file_gt) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## normalize image nim = im/np.std(im) #orient_scores = self.load_or_compute_orientations(train,test, mask=mask) if 1:#not os.path.isfile(outdir + 'points.npy'): from rwsegment import boundary_utils reload(boundary_utils) ## sample points points = boundary_utils.sample_points(im, self.step, mask=mask) points = points[mask[tuple(points.T)]] impoints = np.zeros(im.shape,dtype=int) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ipoints = np.where(impoints.ravel())[0] points = np.argwhere(impoints) np.save(outdir + 'points.npy', points) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ## set unary potentials from prior: array of unary costs nlabel = len(self.labelset) dist = self.distance_to_train(segtrain, points) T = 10.0 prob_pts = np.exp(-(dist/T)**2) / np.c_[np.sum(np.exp(-(dist/T)**2),axis=1)] #prob = np.c_[np.ones(im.size), np.zeros((im.size, nlabel-1))] #prob[mask.ravel(),:] = prior['data'].T #prob_pts = prob[ipoints,:] np.save(outdir + 'prob_points.npy', prob_pts) ## binary potentials ## compute edges edges,edgev,labels = boundary_utils.get_edges(im, points, mask=mask) edges = np.sort(edges,axis=1) np.save(outdir + 'edges.npy', edges) ## get orientation hist orient_scores,hist = self.load_or_compute_orientations(train,test, mask=mask) ##classify edges vecs = points[edges[:,1]] - points[edges[:,0]] vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2,axis=1))] scores = self.get_orient_scores(vecs) prob_orient = np.dot(scores, orient_scores) #prob_orient = prob_orient/np.c_[np.sum(prob_orient, axis=1)] np.save(outdir + 'prob_orient.npy', prob_orient) ''' ## load classifier classifier = self.load_or_compute_classifier(train,test, mask=mask) ## extract profiles profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0) ## make features x = boundary_utils.make_features( profiles, size=self.sizex, additional=[dists,edgev,edgev/dists], ) ## classify cl, scores = classifier.classify(x) ## ground truth z = boundary_utils.is_boundary(points, edges, seg) logger.info('non boundary classification: {}%'\ .format(np.sum((np.r_[z]==0)*(np.r_[cl]==0))/float(np.sum(np.r_[z]==0))*100)) logger.info('boundary classification: {}%'\ .format(np.sum((np.r_[z]==1)*(np.r_[cl]==1))/float(np.sum(np.r_[z]==1))*100)) np.save(outdir + 'classified.npy', cl) ## probabilities prob_edges = 1. - scores/np.c_[np.sum(scores, axis=1)] ##save probs np.save(outdir + 'prob_edges.npy',prob_edges) ''' else: points = np.load(outdir + 'points.npy') edges = np.load(outdir + 'edges.npy') cl = np.load(outdir + 'classified.npy') prob_pts = np.load(outdir + 'prob_points.npy') #prob_edges = np.load(outdir + 'prob_edges.npy') prob_orient = np.load(outdir + 'prob_orient.npy') ## make potentials unary = - np.log(prob_pts + 1e-10) #binary = - np.log(prob_edges + 1e-10) #thresh = (prob_orient.shape[1] - 1.0)/prob_orient.shape[1] thresh = (len(self.orients) - 1.0) / len(self.orients) orient_cost = - np.log(np.clip(prob_orient + thresh,0,1) + 1e-10)*100 orient_cost = np.clip(orient_cost, 0, 1e10) #import ipdb; ipdb.set_trace() ## solve MRF: import ipdb; ipdb.set_trace() ''' from rwsegment.mrf import fastPD class CostFunction(object): def __init__(self,**kwargs): self.binary = kwargs.pop('binary',0) self.orient_indices = kwargs.pop('orient_indices') self.orient_cost = kwargs.pop('orient_cost') def __call__(self,e,l1,l2): idpair = self.orient_indices[l1,l2] pair_cost = self.orient_cost[e,idpair] cost = (l1!=l2)*pair_cost #return (l1!=l2)*(1-cl[e])*0.1 #return (l1!=l2)*self.binary[e,1]*0.1 #y = l1!=l2 #return self.binary[e, y]*pair_cost print e, l1, l2, cost return cost #sol, en = fastPD.fastPD_callback(unary, edges, cost_function(binary), debug=True) cost_function = CostFunction( #binary=binary, orient_indices=self.orient_indices, orient_cost=orient_cost, ) sol, en = fastPD.fastPD_callback(unary, edges, cost_function, debug=True) ''' wpairs = orient_cost from rwsegment.mrf import trw sol, en = trw.TRW_general( unary, edges, wpairs, niters=1000, verbose=True) labels = self.labelset[sol] imsol = np.ones(im.shape, dtype=np.int32)*20 imsol[tuple(points.T)] = labels io_analyze.save(outdir + 'imseeds.hdr', imsol) ## classify sol gtlabels = seg[tuple(points.T)] priorlabels = self.labelset[np.argmin(unary,axis=1)] err_prior = 1 - np.sum(gtlabels==priorlabels)/float(len(points)) err = 1 - np.sum(gtlabels==labels)/float(len(points)) logger.info('error in prior sol: {}%'.format(err_prior*100)) logger.info('error in sol: {}%'.format(err*100)) import ipdb; ipdb.set_trace() ## start segmenting sol,y = rwsegment.segment( nim, seeds=seeds, labelset=self.labelset, weight_function=self.weight_function, **self.params ) ## compute Dice coefficient per label dice = compute_dice_coef(sol, seg,labelset=self.labelset) logger.info('Dice: {}'.format(dice)) if not config.debug: io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32)) np.savetxt( outdir + 'dice.txt', np.c_[dice.keys(),dice.values()],fmt='%d %.8f')
def compute_approximate_aci(self, w, x, z, y0, **kwargs): logger.info("using approximate aci (Danny's)") islices = kwargs.pop('islices', None) imask = kwargs.pop('imask', None) iimask = kwargs.pop('iimask', None) if islices is not None: seeds = self.seeds[islices] mask = [ self.immask[islices].ravel() for i in range(len(self.labelset)) ] prior = { 'data': np.asarray(self.prior['data'])[:, iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:, iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] else: mask = self.mask seeds = self.seeds prior = self.prior weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## combine all prior models anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], image=x, ) class GroundTruthAnchor(object): def __init__(self, anchor_api, gt, gt_weights): self.anchor_api = anchor_api self.gt = gt self.gt_weights = gt_weights def get_labelset(self): return self.anchor_api.get_labelset() def get_anchor_and_weights(self, D, indices): anchor, weights = self.anchor_api.get_anchor_and_weights( D, indices) gt_weights = self.gt_weights[:, indices] gt = self.gt[:, indices] new_weights = weights + gt_weights new_anchor = (anchor * weights + gt * gt_weights) / new_weights return new_anchor, new_weights self.approx_aci_maxiter = 200 self.approx_aci_maxstep = 1e-2 z_weights = np.zeros(np.asarray(z).shape) z_label = np.argmax(z, axis=0) for i in range(self.approx_aci_maxiter): logger.debug("approx aci, iter={}".format(i)) ## add ground truth to anchor api modified_api = GroundTruthAnchor(anchor_api, z, z_weights) ## inference y_ = rwsegment.segment(x, modified_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], **self.rwparams) ## loss #loss = self.compute_loss(z,y_, islices=islices) loss = loss_functions.ideal_loss(z, y_, mask=mask) logger.debug('loss = {}'.format(loss)) if loss < 1e-8: break ## uptade weights delta = np.max(y_ - y_[z_label, np.arange(y_.shape[1])], axis=0) delta = np.clip(delta, 0, self.approx_aci_maxstep) z_weights += delta return y_
def compute_approximate_aci2(self, w, x, z, y0, **kwargs): logger.info('using approximate aci') islices = kwargs.pop('islices', None) imask = kwargs.pop('imask', None) iimask = kwargs.pop('iimask', None) if islices is not None: seeds = self.seeds[islices] mask = [ self.immask[islices].ravel() for i in range(len(self.labelset)) ] prior = { 'data': np.asarray(self.prior['data'])[:, iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:, iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] else: mask = self.mask seeds = self.seeds prior = self.prior weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## combine all prior models anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], image=x, ) ## unconstrained inference y_ = rwsegment.segment( x, anchor_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], #laplacian_label_weights=, **self.rwparams) ## fix correct labels gt = np.argmax(z, axis=0) icorrect = np.argmax(y_, axis=0) == gt seeds_correct = -np.ones(seeds.shape, dtype=int) seeds_correct.flat[icorrect] = self.labelset[gt[icorrect]] ## annotation consistent inference #import ipdb; ipdb.set_trace() y = rwsegment.segment( x, anchor_api, seeds=seeds_correct, weight_function=weight_function, return_arguments=['y'], ground_truth=z, ground_truth_init=y0, seeds_prob=y_, #laplacian_label_weights=, **self.rwparams) y[:, icorrect] = y_[:, icorrect] #import ipdb; ipdb.set_trace() return y
def full_lai(self, w, x, z, switch_loss=False, iter=-1, **kwargs): ''' full Loss Augmented Inference y_ = arg min <w|-psi(x,y_)> - loss(y,y_) ''' if np.max(np.abs(w)) < 1e-10: # if w=0, return z_tilde y_ = np.random.random((len(z), len(z[0]))) y_[np.argmax(z, axis=0), np.arange(len(z[0]))] = 0 y_ = y_ / np.sum(y_, axis=0) return y_ islices = kwargs.pop('islices', None) imask = kwargs.pop('imask', None) iimask = kwargs.pop('iimask', None) if islices is not None: im = x seeds = self.seeds[islices] mask = [ self.immask[islices].ravel() for i in range(len(self.labelset)) ] prior = { 'data': np.asarray(self.prior['data'])[:, iimask], 'imask': imask, 'variance': np.asarray(self.prior['variance'])[:, iimask], 'labelset': self.labelset, } if 'intensity' in self.prior: prior['intensity'] = self.prior['intensity'] seg = z else: im = x mask = self.mask seeds = self.seeds prior = self.prior seg = z ## combine all weight functions weight_function = MetaLaplacianFunction( np.asarray(w)[self.indices_laplacians], self.laplacian_functions, ) ## loss type addlin = None loss = None loss_weight = None L_loss = None loss_type = self.loss_type if loss_type in ['ideal', 'none']: pass elif loss_type == 'squareddiff': loss, loss_weight = loss_functions.compute_loss_anchor(seg, mask=mask) loss_weight *= self.loss_factor elif loss_type == 'laplacian': L_loss = - loss_functions.compute_loss_laplacian(seg, mask=mask) *\ self.loss_factor elif loss_type == 'linear': addlin, linw = loss_functions.compute_loss_linear(seg, mask=mask) addlin *= linw * self.loss_factor else: raise Exception('did not recognize loss type {}'.format(loss_type)) sys.exit(1) ## loss function anchor_api = MetaAnchor( prior=prior, prior_models=self.prior_models, prior_weights=np.asarray(w)[self.indices_priors], loss=loss, loss_weight=loss_weight, image=im, ) ## best y_ most different from y y_ = rwsegment.segment( im, anchor_api, seeds=seeds, weight_function=weight_function, return_arguments=['y'], additional_laplacian=L_loss, additional_linear=addlin, #laplacian_label_weights=, **self.rwparams) return y_