コード例 #1
0
def local_translation(r1, r2, x, y, w, h, m):
    """
    Estimates the optimal translation to minimise the relative pointing error
    on a given tile.

    Args:
        r1, r2: two instances of the rpc_model.RPCModel class
        x, y, w, h: region of interest in the reference image (r1)
        m: Nx4 numpy array containing a list of matches, one per line. Each
            match is given by (p1, p2, q1, q2) where (p1, p2) is a point of the
            reference view and (q1, q2) is the corresponding point in the
            secondary view.

    Returns:
        3x3 numpy array containing the homogeneous representation of the
        optimal planar translation, to be applied to the secondary image in
        order to correct the pointing error.
    """
    # estimate the affine fundamental matrix between the two views
    n = cfg['n_gcp_per_axis']
    rpc_matches = rpc_utils.matches_from_rpc(r1, r2, x, y, w, h, n)
    F = estimation.affine_fundamental_matrix(rpc_matches)

    # compute the error vectors
    e = error_vectors(m, F, 'sec')

    # compute the median: as the vectors are collinear (because F is affine)
    # computing the median of each component independently is correct
    N = len(e)
    out_x = np.sort(e[:, 0])[int(N / 2)]
    out_y = np.sort(e[:, 1])[int(N / 2)]

    # the correction to be applied to the second view is the opposite
    A = np.array([[1, 0, -out_x], [0, 1, -out_y], [0, 0, 1]])
    return A
コード例 #2
0
ファイル: sift.py プロジェクト: hnrck/s2p
def matches_on_rpc_roi(im1, im2, rpc1, rpc2, x, y, w, h):
    """
    Compute a list of SIFT matches between two images on a given roi.

    The corresponding roi in the second image is determined using the rpc
    functions.

    Args:
        im1, im2: paths to two large tif images
        rpc1, rpc2: two instances of the rpcm.RPCModel class
        x, y, w, h: four integers defining the rectangular ROI in the first
            image. (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.

    Returns:
        matches: 2D numpy array containing a list of matches. Each line
            contains one pair of points, ordered as x1 y1 x2 y2.
            The coordinate system is that of the full images.
    """
    x2, y2, w2, h2 = rpc_utils.corresponding_roi(rpc1, rpc2, x, y, w, h)

    # estimate an approximate affine fundamental matrix from the rpcs
    rpc_matches = rpc_utils.matches_from_rpc(rpc1, rpc2, x, y, w, h, 5)
    F = estimation.affine_fundamental_matrix(rpc_matches)

    # sift matching method:
    method = 'relative' if cfg[
        'relative_sift_match_thresh'] is True else 'absolute'

    # if less than 10 matches, lower thresh_dog. An alternative would be ASIFT
    thresh_dog = 0.0133
    for i in range(2):
        p1 = image_keypoints(im1, x, y, w, h, thresh_dog=thresh_dog)
        p2 = image_keypoints(im2, x2, y2, w2, h2, thresh_dog=thresh_dog)
        matches = keypoints_match(p1,
                                  p2,
                                  method,
                                  cfg['sift_match_thresh'],
                                  F,
                                  epipolar_threshold=cfg['max_pointing_error'],
                                  model='fundamental')
        if matches is not None and matches.ndim == 2 and matches.shape[0] > 10:
            break
        thresh_dog /= 2.0
    else:
        print("WARNING: sift.matches_on_rpc_roi: found no matches.")
        return None
    return matches
コード例 #3
0
ファイル: rectification.py プロジェクト: hnrck/s2p
def rectification_homographies(matches, x, y, w, h):
    """
    Computes rectifying homographies from point matches for a given ROI.

    The affine fundamental matrix F is estimated with the gold-standard
    algorithm, then two rectifying similarities (rotation, zoom, translation)
    are computed directly from F.

    Args:
        matches: numpy array of shape (n, 4) containing a list of 2D point
            correspondences between the two images.
        x, y, w, h: four integers defining the rectangular ROI in the first
            image. (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
    Returns:
        S1, S2, F: three numpy arrays of shape (3, 3) representing the
        two rectifying similarities to be applied to the two images and the
        corresponding affine fundamental matrix.
    """
    # estimate the affine fundamental matrix with the Gold standard algorithm
    F = estimation.affine_fundamental_matrix(matches)

    # compute rectifying similarities
    S1, S2 = estimation.rectifying_similarities_from_affine_fundamental_matrix(
        F, cfg['debug'])

    if cfg['debug']:
        y1 = common.points_apply_homography(S1, matches[:, :2])[:, 1]
        y2 = common.points_apply_homography(S2, matches[:, 2:])[:, 1]
        err = np.abs(y1 - y2)
        print("max, min, mean rectification error on point matches: ", end=' ')
        print(np.max(err), np.min(err), np.mean(err))

    # pull back top-left corner of the ROI to the origin (plus margin)
    pts = common.points_apply_homography(
        S1, [[x, y], [x + w, y], [x + w, y + h], [x, y + h]])
    x0, y0 = common.bounding_box2D(pts)[:2]
    T = common.matrix_translation(-x0, -y0)
    return np.dot(T, S1), np.dot(T, S2), F