コード例 #1
0
def stereo_matching(tile, i):
    """
    Compute the disparity of a pair of images on a given tile.

    Args:
        tile: dictionary containing the information needed to process a tile.
        i: index of the processed pair
    """
    out_dir = os.path.join(tile['dir'], 'pair_{}'.format(i))
    x, y = tile['coordinates'][:2]

    outputs = ['rectified_mask.png', 'rectified_disp.tif']

    if os.path.exists(os.path.join(out_dir, 'stderr.log')):
        print('disparity estimation: stderr.log exists')
        print('pair_{} not processed on tile {} {}'.format(i, x, y))
        return

    if cfg['skip_existing'] and all(
            os.path.isfile(os.path.join(out_dir, f)) for f in outputs):
        print('disparity estimation done on tile {} {} pair {}'.format(
            x, y, i))
        return

    print('estimating disparity on tile {} {} pair {}...'.format(x, y, i))
    rect1 = os.path.join(out_dir, 'rectified_ref.tif')
    rect2 = os.path.join(out_dir, 'rectified_sec.tif')
    disp = os.path.join(out_dir, 'rectified_disp.tif')
    mask = os.path.join(out_dir, 'rectified_mask.png')
    disp_min, disp_max = np.loadtxt(os.path.join(out_dir, 'disp_min_max.txt'))

    block_matching.compute_disparity_map(rect1, rect2, disp, mask,
                                         cfg['matching_algorithm'], disp_min,
                                         disp_max)

    # add margin around masked pixels
    masking.erosion(mask, mask, cfg['msk_erosion'])

    if cfg['clean_intermediate']:
        if len(cfg['images']) > 2:
            common.remove(rect1)
        common.remove(rect2)
        common.remove(os.path.join(out_dir, 'disp_min_max.txt'))
コード例 #2
0
ファイル: s2p.py プロジェクト: mnhrdt/s2p
def stereo_matching(tile,i):
    """
    Compute the disparity of a pair of images on a given tile.

    Args:
        tile: dictionary containing the information needed to process a tile.
        i: index of the processed pair
    """
    out_dir = os.path.join(tile['dir'], 'pair_{}'.format(i))
    x, y = tile['coordinates'][:2]

    outputs = ['rectified_mask.png', 'rectified_disp.tif']

    if os.path.exists(os.path.join(out_dir, 'stderr.log')):
        print('disparity estimation: stderr.log exists')
        print('pair_{} not processed on tile {} {}'.format(i, x, y))
        return

    if cfg['skip_existing'] and all(os.path.isfile(os.path.join(out_dir, f)) for
                                    f in outputs):
        print('disparity estimation done on tile {} {} pair {}'.format(x, y, i))
        return

    print('estimating disparity on tile {} {} pair {}...'.format(x, y, i))
    rect1 = os.path.join(out_dir, 'rectified_ref.tif')
    rect2 = os.path.join(out_dir, 'rectified_sec.tif')
    disp = os.path.join(out_dir, 'rectified_disp.tif')
    mask = os.path.join(out_dir, 'rectified_mask.png')
    disp_min, disp_max = np.loadtxt(os.path.join(out_dir, 'disp_min_max.txt'))

    block_matching.compute_disparity_map(rect1, rect2, disp, mask,
                                         cfg['matching_algorithm'], disp_min,
                                         disp_max)

    # add margin around masked pixels
    masking.erosion(mask, mask, cfg['msk_erosion'])

    if cfg['clean_intermediate']:
        if len(cfg['images']) > 2:
            common.remove(rect1)
        common.remove(rect2)
        common.remove(os.path.join(out_dir,'disp_min_max.txt'))