コード例 #1
0
ファイル: train.py プロジェクト: vincentmaye/pytorch_sac_ae
def make_agent(obs_shape, action_shape, args, device):
    if args.agent == 'sac_ae':
        return SacAeAgent(
            obs_shape=obs_shape,
            action_shape=action_shape,
            device=device,
            hidden_dim=args.hidden_dim,
            discount=args.discount,
            init_temperature=args.init_temperature,
            alpha_lr=args.alpha_lr,
            alpha_beta=args.alpha_beta,
            actor_lr=args.actor_lr,
            actor_beta=args.actor_beta,
            actor_log_std_min=args.actor_log_std_min,
            actor_log_std_max=args.actor_log_std_max,
            actor_update_freq=args.actor_update_freq,
            critic_lr=args.critic_lr,
            critic_beta=args.critic_beta,
            critic_tau=args.critic_tau,
            critic_target_update_freq=args.critic_target_update_freq,
            encoder_type=args.encoder_type,
            encoder_feature_dim=args.encoder_feature_dim,
            encoder_lr=args.encoder_lr,
            encoder_tau=args.encoder_tau,
            decoder_type=args.decoder_type,
            decoder_lr=args.decoder_lr,
            decoder_update_freq=args.decoder_update_freq,
            decoder_latent_lambda=args.decoder_latent_lambda,
            decoder_weight_lambda=args.decoder_weight_lambda,
            num_layers=args.num_layers,
            num_filters=args.num_filters)
    else:
        assert 'agent is not supported: %s' % args.agent
コード例 #2
0
def make_agent(obs_shape, action_shape, args, device):
    if args.agent == 'curl_sac':
        return CurlSacAgent(
            obs_shape=obs_shape,
            action_shape=action_shape,
            device=device,
            hidden_dim=args.hidden_dim,
            discount=args.discount,
            init_temperature=args.init_temperature,
            alpha_lr=args.alpha_lr,
            alpha_beta=args.alpha_beta,
            actor_lr=args.actor_lr,
            actor_beta=args.actor_beta,
            actor_log_std_min=args.actor_log_std_min,
            actor_log_std_max=args.actor_log_std_max,
            actor_update_freq=args.actor_update_freq,
            critic_lr=args.critic_lr,
            critic_beta=args.critic_beta,
            critic_tau=args.critic_tau,
            critic_target_update_freq=args.critic_target_update_freq,
            encoder_type=args.encoder_type,
            encoder_feature_dim=args.encoder_feature_dim,
            encoder_lr=args.encoder_lr,
            encoder_tau=args.encoder_tau,
            num_layers=args.num_layers,
            num_filters=args.num_filters,
            log_interval=args.log_interval,
            detach_encoder=args.detach_encoder,
            curl_latent_dim=args.curl_latent_dim,
            pre_training_steps=args.pre_training_steps)

    elif args.agent == 'sac_ae':
        return SacAeAgent(
            obs_shape=obs_shape,
            action_shape=action_shape,
            device=device,
            hidden_dim=args.hidden_dim,
            discount=args.discount,
            init_temperature=args.init_temperature,
            alpha_lr=args.alpha_lr,
            alpha_beta=args.alpha_beta,
            actor_lr=args.actor_lr,
            actor_beta=args.actor_beta,
            actor_log_std_min=args.actor_log_std_min,
            actor_log_std_max=args.actor_log_std_max,
            actor_update_freq=args.actor_update_freq,
            critic_lr=args.critic_lr,
            critic_beta=args.critic_beta,
            critic_tau=args.critic_tau,
            critic_target_update_freq=args.critic_target_update_freq,
            encoder_type=args.encoder_type,
            encoder_feature_dim=args.encoder_feature_dim,
            encoder_lr=args.encoder_lr,
            encoder_tau=args.encoder_tau,
            decoder_type=args.decoder_type,
            decoder_lr=args.decoder_lr,
            decoder_update_freq=args.decoder_update_freq,
            decoder_latent_lam=args.decoder_latent_lam,
            decoder_weight_lam=args.decoder_weight_lam,
            num_layers=args.num_layers,
            num_filters=args.num_filters,
            pre_training_steps=args.pre_training_steps)

    elif args.agent == 'cfrl_sac':
        return CfrlSacAgent(
            obs_shape=obs_shape,
            action_shape=action_shape,
            device=device,
            hidden_dim=args.hidden_dim,
            discount=args.discount,
            init_temperature=args.init_temperature,
            alpha_lr=args.alpha_lr,
            alpha_beta=args.alpha_beta,
            actor_lr=args.actor_lr,
            actor_beta=args.actor_beta,
            actor_log_std_min=args.actor_log_std_min,
            actor_log_std_max=args.actor_log_std_max,
            actor_update_freq=args.actor_update_freq,
            critic_lr=args.critic_lr,
            critic_beta=args.critic_beta,
            critic_tau=args.critic_tau,
            critic_target_update_freq=args.critic_target_update_freq,
            encoder_type=args.encoder_type,
            encoder_feature_dim=args.encoder_feature_dim,
            encoder_lr=args.encoder_lr,
            encoder_tau=args.encoder_tau,
            num_layers=args.num_layers,
            num_filters=args.num_filters,
            log_interval=args.log_interval,
            detach_encoder=args.detach_encoder,
            curl_latent_dim=args.curl_latent_dim,
            pre_training_steps=args.pre_training_steps)

    else:
        assert 'agent is not supported: %s' % args.agent