コード例 #1
0
ファイル: elliptic_curve.py プロジェクト: koffie/lmfdb
def plot_ec(label):
    ainvs = db.ec_curves.lookup(label, 'ainvs', 'lmfdb_label')
    if ainvs is None:
        return elliptic_curve_jump_error(label, {})
    E = EllipticCurve(ainvs)
    P = E.plot()
    _, filename = tempfile.mkstemp('.png')
    P.save(filename)
    data = open(filename).read()
    os.unlink(filename)
    response = make_response(data)
    response.headers['Content-type'] = 'image/png'
    return response
コード例 #2
0
def plot_ec(label):
    ainvs = db.ec_curves.lookup(label, 'ainvs', 'lmfdb_label')
    if ainvs is None:
        return elliptic_curve_jump_error(label, {})
    E = EllipticCurve(ainvs)
    P = E.plot()
    _, filename = tempfile.mkstemp('.png')
    P.save(filename)
    data = open(filename).read()
    os.unlink(filename)
    response = make_response(data)
    response.headers['Content-type'] = 'image/png'
    return response
コード例 #3
0
def plot_ec(label):
    CDB = db_ec()
    data = CDB.find_one({'lmfdb_label': label})
    if data is None:
        return elliptic_curve_jump_error(label, {})
    E = EllipticCurve(parse_ainvs(data['xainvs']))
    P = E.plot()
    _, filename = tempfile.mkstemp('.png')
    P.save(filename)
    data = open(filename).read()
    os.unlink(filename)
    response = make_response(data)
    response.headers['Content-type'] = 'image/png'
    return response
コード例 #4
0
ファイル: elliptic_curve.py プロジェクト: haraldschilly/lmfdb
def plot_ec(label):
    CDB = db_ec()
    data = CDB.find_one({'lmfdb_label': label})
    if data is None:
        return elliptic_curve_jump_error(label, {})
    E = EllipticCurve(parse_ainvs(data['xainvs']))
    P = E.plot()
    _, filename = tempfile.mkstemp('.png')
    P.save(filename)
    data = open(filename).read()
    os.unlink(filename)
    response = make_response(data)
    response.headers['Content-type'] = 'image/png'
    return response
コード例 #5
0
ファイル: elliptic_curve.py プロジェクト: WarrenMoore/lmfdb
def plot_ec(label):
    C = lmfdb.base.getDBConnection()
    data = C.elliptic_curves.curves.find_one({'lmfdb_label': label})
    if data is None:
        return elliptic_curve_jump_error(label, {})
    ainvs = [int(a) for a in data['ainvs']]
    E = EllipticCurve(ainvs)
    P = E.plot()
    _, filename = tempfile.mkstemp('.png')
    P.save(filename)
    data = open(filename).read()
    os.unlink(filename)
    response = make_response(data)
    response.headers['Content-type'] = 'image/png'
    return response
コード例 #6
0
ファイル: elliptic_curve.py プロジェクト: sibilant/lmfdb
def plot_ec(label):
    C = lmfdb.base.getDBConnection()
    data = C.elliptic_curves.curves.find_one({'lmfdb_label': label})
    if data is None:
        return elliptic_curve_jump_error(label, {})
    ainvs = [int(a) for a in data['ainvs']]
    E = EllipticCurve(ainvs)
    P = E.plot()
    _, filename = tempfile.mkstemp('.png')
    P.save(filename)
    data = open(filename).read()
    os.unlink(filename)
    response = make_response(data)
    response.headers['Content-type'] = 'image/png'
    return response
コード例 #7
0
ファイル: web_ec.py プロジェクト: paulhus/lmfdb
class WebEC(object):
    """
    Class for an elliptic curve over Q
    """
    def __init__(self, dbdata):
        """
        Arguments:

            - dbdata: the data from the database
        """
        logger.debug("Constructing an instance of ECisog_class")
        self.__dict__.update(dbdata)
        # Next lines because the hyphens make trouble
        self.xintcoords = parse_list(dbdata['x-coordinates_of_integral_points'])
        self.non_surjective_primes = dbdata['non-surjective_primes']
        # Next lines because the python identifiers cannot start with 2
        self.twoadic_index = dbdata['2adic_index']
        self.twoadic_log_level = dbdata['2adic_log_level']
        self.twoadic_gens = dbdata['2adic_gens']
        self.twoadic_label = dbdata['2adic_label']
        # All other fields are handled here
        self.make_curve()

    @staticmethod
    def by_label(label):
        """
        Searches for a specific elliptic curve in the curves
        collection by its label, which can be either in LMFDB or
        Cremona format.
        """
        try:
            N, iso, number = split_lmfdb_label(label)
            data = db_ec().find_one({"lmfdb_label" : label})
        except AttributeError:
            try:
                N, iso, number = split_cremona_label(label)
                data = db_ec().find_one({"label" : label})
            except AttributeError:
                return "Invalid label" # caller must catch this and raise an error

        if data:
            return WebEC(data)
        return "Curve not found" # caller must catch this and raise an error

    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data['ainvs'] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data['ainvs'])
        data['equation'] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data['conductor'] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data['j_invariant'] = QQ(str(self.jinv))
        except KeyError:
            data['j_invariant'] = self.E.j_invariant()
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        data['disc'] = D = self.E.discriminant()
        data['disc_latex'] = web_latex(data['disc'])
        data['disc_factor'] = latex(data['disc'].factor())
        data['cond_factor'] =latex(N.factor())
        data['cond_latex'] = web_latex(N)

        # CM and endomorphism ring

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD']%4==0:
                d4 = ZZ(data['CMD'])//4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']

        # modular degree

        try:
            data['degree'] = self.degree
        except AttributeError:
            try:
                data['degree'] = self.E.modular_degree()
            except RuntimeError:
                data['degree']  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve()
        from sage.libs.pari.all import PariError
        try:
            minq, minqD = self.E.minimal_quadratic_twist()
        except PariError:  # this does occur with 164411a1
            ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label)
            minq = self.E
            minqD = 1
        data['minq_D'] = minqD
        if self.E == minq:
            data['minq_label'] = self.lmfdb_label
            data['minq_info'] = '(itself)'
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data['minq_label'] = db_ec().find_one({'ainvs': minq_ainvs})['lmfdb_label']
            data['minq_info'] = '(by %s)' % minqD

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw['rank'] = self.rank
        try:
            self.generators = [self.E(g) for g in parse_points(self.gens)]
            mw['generators'] = [web_latex(P.xy()) for P in self.generators]
            mw['heights'] = [P.height() for P in self.generators]
        except AttributeError:
            mw['generators'] = ''
            mw['heights'] = []

        # Torsion subgroup: order, structure, generators

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n
                                                 for n in tor_struct])
            mw['tor_gens'] = ', '.join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{'p': p,'image': im }
                               for p,im in zip(data['non_surjective_primes'],
                                               data['galois_images'])]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens])
            data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"
        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r,r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1+self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)


        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0
        data['p_adic_primes'] = [p for p in sage.all.prime_range(5, 100)
                                 if self.E.is_ordinary(p) and not p.divides(N)]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # used to crash on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p['p'] = p
            local_data_p['tamagawa_number'] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p['kodaira_symbol'] = web_latex(local_info.kodaira_symbol()).replace('$', '')
            local_data_p['reduction_type'] = local_info.bad_reduction_type()
            local_data_p['ord_cond'] = local_info.conductor_valuation()
            local_data_p['ord_disc'] = local_info.discriminant_valuation()
            local_data_p['ord_den_j'] = max(0,-self.E.j_invariant().valuation(p))
            local_data.append(local_data_p)

        if len(bad_primes)>1:
            bsd['tamagawa_factors'] = r' \cdot '.join(str(c.factor()) for c in tamagawa_numbers)
        else:
            bsd['tamagawa_factors'] = ''
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data['newform'] =  web_latex(self.E.q_eigenform(10))

        self.make_code_snippets()

        self.friends = [
            ('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)),
            ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)),
            ('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso)),
            ('Symmetric 4th power L-function', url_for("l_functions.l_function_ec_sym_page", power='4', label=self.lmfdb_iso)),
            ('Modular form ' + self.lmfdb_iso.replace('.', '.2'), url_for("emf.render_elliptic_modular_forms", level=int(N), weight=2, character=0, label=iso))]

        self.downloads = [('Download coeffients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)),
                          ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label))]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label),
                           (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])
                           ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                           ('$\Q$', url_for(".rational_elliptic_curves")),
                           ('%s' % N, url_for(".by_conductor", conductor=N)),
                           ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
                           ('%s' % num,' ')]

    def make_code_snippets(self):
        # read in code.yaml from current directory:

        _curdir = os.path.dirname(os.path.abspath(__file__))
        self.code =  yaml.load(open(os.path.join(_curdir, "code.yaml")))

        # Fill in placeholders for this specific curve:

        for lang in ['sage', 'pari', 'magma']:
            self.code['curve'][lang] = self.code['curve'][lang] % (self.data['ainvs'],self.label)

        for k in self.code:
            if k != 'prompt':
                for lang in self.code[k]:
                    self.code[k][lang] = self.code[k][lang].split("\n")
                    # remove final empty line
                    if len(self.code[k][lang][-1])==0:
                        self.code[k][lang] = self.code[k][lang][:-1]
コード例 #8
0
class WebEC(object):
    """
    Class for an elliptic curve over Q
    """
    def __init__(self, dbdata):
        """
        Arguments:

            - dbdata: the data from the database
        """
        logger.debug("Constructing an instance of WebEC")
        self.__dict__.update(dbdata)
        # Next lines because the hyphens make trouble
        self.xintcoords = split_list(
            dbdata['x-coordinates_of_integral_points'])
        self.non_surjective_primes = dbdata['non-surjective_primes']
        # Next lines because the python identifiers cannot start with 2
        self.twoadic_index = dbdata['2adic_index']
        self.twoadic_log_level = dbdata['2adic_log_level']
        self.twoadic_gens = dbdata['2adic_gens']
        self.twoadic_label = dbdata['2adic_label']
        # All other fields are handled here
        self.make_curve()

    @staticmethod
    def by_label(label):
        """
        Searches for a specific elliptic curve in the curves
        collection by its label, which can be either in LMFDB or
        Cremona format.
        """
        try:
            N, iso, number = split_lmfdb_label(label)
            data = db_ec().find_one({"lmfdb_label": label})
        except AttributeError:
            try:
                N, iso, number = split_cremona_label(label)
                data = db_ec().find_one({"label": label})
            except AttributeError:
                return "Invalid label"  # caller must catch this and raise an error

        if data:
            return WebEC(data)
        return "Curve not found"  # caller must catch this and raise an error

    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]

            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1 * x + a3)
                d = (b * b + 4 * f).sqrt()
                return (x, (-b + d) / 2)

            mw['int_points'] = ', '.join(
                web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [
                web_latex(tuple(P)) for P in parse_points(self.gens)
            ]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(tuple(P))
                for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            D = self.signD * prod(
                [ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                                  for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                                  for ld in local_data],
                                 unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one(
                {'label': minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree'] = 0  # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({
                    'lmfdb_iso': self.lmfdb_iso,
                    'number': 1
                }, ['anlist', 'aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            print("Falling back to constructing E")
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p, e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one(
                    {
                        'jinv': str(self.E.j_invariant()),
                        'ainvs': minq_ainvs
                    }, ['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20, python_ints=True)
            data['ap'] = self.E.aplist(100, python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace(
                    '$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                rootno = -ld.bad_reduction_type()
                if rootno == 0:
                    rootno = self.E.root_number(p)
                local_data_p['rootno'] = rootno
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(
                    0, -self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        # If we got the data from the database, the root numbers may
        # not have been stored there, so we have to compute them.  If
        # there are additive primes this means constructing the curve.
        for ld in self.local_data:
            if not 'rootno' in ld:
                rootno = -ld['red']
                if rootno == 0:
                    try:
                        E = self.E
                    except AttributeError:
                        self.E = E = EllipticCurve(data['ainvs'])
                    rootno = E.root_number(ld['p'])
                ld['rootno'] = rootno

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        try:
            data['galois_images'] = [
                trim_galois_image_code(s) for s in self.galois_images
            ]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_surjective_primes'],
                           data['galois_images'])]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = prod(tamagawa_numbers)

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 label=self.lmfdb_label))]
        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          label=self.lmfdb_iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          label=self.lmfdb_iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download Sage code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]

    def code(self):
        if self._code == None:
            self.make_code_snippets()
        return self._code

    def make_code_snippets(self):
        # read in code.yaml from current directory:

        _curdir = os.path.dirname(os.path.abspath(__file__))
        self._code = yaml.load(open(os.path.join(_curdir, "code.yaml")))

        # Fill in placeholders for this specific curve:

        for lang in ['sage', 'pari', 'magma']:
            self._code['curve'][lang] = self._code['curve'][lang] % (
                self.data['ainvs'], self.label)
        return
        for k in self._code:
            if k != 'prompt':
                for lang in self._code[k]:
                    self._code[k][lang] = self._code[k][lang].split("\n")
                    # remove final empty line
                    if len(self._code[k][lang][-1]) == 0:
                        self._code[k][lang] = self._code[k][lang][:-1]
コード例 #9
0
ファイル: web_ec.py プロジェクト: elguindy/lmfdb
class WebEC(object):
    """
    Class for an elliptic curve over Q
    """
    def __init__(self, dbdata):
        """
        Arguments:

            - dbdata: the data from the database
        """
        logger.info("Constructing an instance of ECisog_class")
        self.__dict__.update(dbdata)
        # Next lines because the hyphens make trouble
        self.xintcoords = parse_list(dbdata['x-coordinates_of_integral_points'])
        self.non_surjective_primes = dbdata['non-surjective_primes']
        self.make_curve()

    @staticmethod
    def by_label(label):
        """
        Searches for a specific elliptic curve in the curves
        collection by its label, which can be either in LMFDB or
        Cremona format.
        """
        print "curve label = %s" % label
        try:
            N, iso, number = lmfdb_label_regex.match(label).groups()
            data = db_ec().find_one({"lmfdb_label" : label})
        except AttributeError:
            try:
                N, iso, number = cremona_label_regex.match(label).groups()
                data = db_ec().find_one({"label" : label})
            except AttributeError:
                return "Invalid label" # caller must catch this and raise an error

        if data:
            return WebEC(data)
        return "Curve not found" # caller must catch this and raise an error

    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data['ainvs'] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data['ainvs'])
        data['equation'] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data['conductor'] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data['j_invariant'] = QQ(str(self.jinv))
        except KeyError:
            data['j_invariant'] = self.E.j_invariant()
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        data['disc'] = self.E.discriminant()
        data['disc_latex'] = web_latex(data['disc'])
        data['disc_factor'] = latex(data['disc'].factor())
        data['cond_factor'] =latex(N.factor())
        data['cond_latex'] = web_latex(N)

        # CM and endomorphism ring

        data['CMD'] = 0
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.E.has_cm():
            data['CMD'] = self.E.cm_discriminant()
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD']%4==0:
                d4 = ZZ(data['CMD'])//4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']

        # modular degree

        try:
            data['degree'] = self.degree
        except AttributeError:
            try:
                data['degree'] = self.E.modular_degree()
            except RuntimeError:
                data['degree']  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve(prec=200)
        from sage.libs.pari.all import PariError
        try:
            minq = self.E.minimal_quadratic_twist()[0]
        except PariError:  # this does occur with 164411a1
            ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label)
            minq = self.E
        if self.E == minq:
            data['minq_label'] = self.lmfdb_label
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data['minq_label'] = db_ec().find_one({'ainvs': minq_ainvs})['lmfdb_label']

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw['rank'] = self.rank
        try:
            mw['generators'] = ', '.join(web_latex(self.E(g).xy()) for g in parse_points(self.gens))
        except AttributeError:
            mw['generators'] = ''

        # Torsion subgroup: order, structure, generators

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n
                                                 for n in tor_struct])
            mw['tor_gens'] = ', '.join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{'p': p,'image': im }
                               for p,im in zip(data['non_surjective_primes'],
                                               data['galois_images'])]

        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        if mw['rank'] >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)" % mw['rank']
        elif mw['rank']:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1+self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)


        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0
        data['p_adic_primes'] = [p for p in sage.all.prime_range(5, 100)
                                 if self.E.is_ordinary(p) and not p.divides(N)]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # crashes on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p['p'] = p
            local_data_p['tamagawa_number'] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p['kodaira_symbol'] = web_latex(local_info.kodaira_symbol()).replace('$', '')
            local_data_p['reduction_type'] = local_info.bad_reduction_type()
            local_data.append(local_data_p)

        bsd['tamagawa_factors'] = r' \cdot '.join(str(c.factor()) for c in tamagawa_numbers)
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        mod_form_iso = lmfdb_label_regex.match(self.lmfdb_iso).groups()[1]
        data['newform'] =  web_latex(self.E.q_eigenform(10))

        self.friends = [
            ('Isogeny class ' + self.lmfdb_iso, url_for(".by_ec_label", label=self.lmfdb_iso)),
            ('Minimal quadratic twist ' + data['minq_label'], url_for(".by_ec_label", label=data['minq_label'])),
            ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)),
            ('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso)),
            ('Symmetric 4th power L-function', url_for("l_functions.l_function_ec_sym_page", power='4', label=self.lmfdb_iso)),
            ('Modular form ' + self.lmfdb_iso.replace('.', '.2'), url_for("emf.render_elliptic_modular_forms", level=int(N), weight=2, character=0, label=mod_form_iso))]

        self.downloads = [('Download coeffients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)),
                          ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label))]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label),
                           (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])
                           ]

        if self.lmfdb_iso == self.iso:
            self.title = "Elliptic Curve %s" % self.lmfdb_label
        else:
            self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves ', url_for(".rational_elliptic_curves")), ('isogeny class %s' % self.lmfdb_iso, ' ')]
コード例 #10
0
ファイル: web_ec.py プロジェクト: alinabucur/lmfdb
class WebEC(object):
    """
    Class for an elliptic curve over Q
    """

    def __init__(self, dbdata):
        """
        Arguments:

            - dbdata: the data from the database
        """
        logger.debug("Constructing an instance of ECisog_class")
        self.__dict__.update(dbdata)
        # Next lines because the hyphens make trouble
        self.xintcoords = split_list(dbdata["x-coordinates_of_integral_points"])
        self.non_surjective_primes = dbdata["non-surjective_primes"]
        # Next lines because the python identifiers cannot start with 2
        self.twoadic_index = dbdata["2adic_index"]
        self.twoadic_log_level = dbdata["2adic_log_level"]
        self.twoadic_gens = dbdata["2adic_gens"]
        self.twoadic_label = dbdata["2adic_label"]
        # All other fields are handled here
        self.make_curve()

    @staticmethod
    def by_label(label):
        """
        Searches for a specific elliptic curve in the curves
        collection by its label, which can be either in LMFDB or
        Cremona format.
        """
        try:
            N, iso, number = split_lmfdb_label(label)
            data = db_ec().find_one({"lmfdb_label": label})
        except AttributeError:
            try:
                N, iso, number = split_cremona_label(label)
                data = db_ec().find_one({"label": label})
            except AttributeError:
                return "Invalid label"  # caller must catch this and raise an error

        if data:
            return WebEC(data)
        return "Curve not found"  # caller must catch this and raise an error

    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data["ainvs"] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data["ainvs"])
        data["equation"] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data["conductor"] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data["j_invariant"] = QQ(str(self.jinv))
        except KeyError:
            data["j_invariant"] = self.E.j_invariant()
        data["j_inv_factor"] = latex(0)
        if data["j_invariant"]:
            data["j_inv_factor"] = latex(data["j_invariant"].factor())
        data["j_inv_str"] = unicode(str(data["j_invariant"]))
        data["j_inv_latex"] = web_latex(data["j_invariant"])
        data["disc"] = D = self.E.discriminant()
        data["disc_latex"] = web_latex(data["disc"])
        data["disc_factor"] = latex(data["disc"].factor())
        data["cond_factor"] = latex(N.factor())
        data["cond_latex"] = web_latex(N)

        # CM and endomorphism ring

        data["CMD"] = self.cm
        data["CM"] = "no"
        data["EndE"] = "\(\Z\)"
        if self.cm:
            data["CM"] = "yes (\(D=%s\))" % data["CMD"]
            if data["CMD"] % 4 == 0:
                d4 = ZZ(data["CMD"]) // 4
                data["EndE"] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data["EndE"] = "\(\Z[(1+\sqrt{%s})/2]\)" % data["CMD"]
            data["ST"] = '<a href="%s">$%s$</a>' % (url_for("st.by_label", label="1.2.N(U(1))"), "N(\\mathrm{U}(1))")
        else:
            data["ST"] = '<a href="%s">$%s$</a>' % (url_for("st.by_label", label="1.2.SU(2)"), "\\mathrm{SU}(2)")

        # modular degree

        try:
            data["degree"] = self.degree
        except AttributeError:
            try:
                data["degree"] = self.E.modular_degree()
            except RuntimeError:
                data["degree"]  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve()
        from sage.libs.pari.all import PariError

        try:
            minq, minqD = self.E.minimal_quadratic_twist()
        except PariError:  # this does occur with 164411a1
            ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label)
            minq = self.E
            minqD = 1
        data["minq_D"] = minqD
        if self.E == minq:
            data["minq_label"] = self.lmfdb_label
            data["minq_info"] = "(itself)"
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data["minq_label"] = db_ec().find_one({"jinv": str(self.E.j_invariant()), "ainvs": minq_ainvs})[
                "lmfdb_label"
            ]
            data["minq_info"] = "(by %s)" % minqD

        minq_N, minq_iso, minq_number = split_lmfdb_label(data["minq_label"])

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw["int_points"] = ", ".join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw["rank"] = self.rank
        try:
            self.generators = [self.E(g) for g in parse_points(self.gens)]
            mw["generators"] = [web_latex(P.xy()) for P in self.generators]
            mw["heights"] = [P.height() for P in self.generators]
        except AttributeError:
            mw["generators"] = ""
            mw["heights"] = []

        # Torsion subgroup: order, structure, generators

        mw["tor_order"] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw["tor_order"] == 1:
            mw["tor_struct"] = "\mathrm{Trivial}"
            mw["tor_gens"] = ""
        else:
            mw["tor_struct"] = " \\times ".join(["\Z/{%s}\Z" % n for n in tor_struct])
            mw["tor_gens"] = ", ".join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data["galois_images"] = [trim_galois_image_code(s) for s in self.galois_images]
            data["non_surjective_primes"] = self.non_surjective_primes
        except AttributeError:
            # print "No Galois image data"
            data["galois_images"] = []
            data["non_surjective_primes"] = []

        data["galois_data"] = [
            {"p": p, "image": im} for p, im in zip(data["non_surjective_primes"], data["galois_images"])
        ]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix

            data["twoadic_gen_matrices"] = ",".join([latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data["twoadic_rouse_url"] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"
        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        r = self.rank
        if r >= 2:
            bsd["lder_name"] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd["lder_name"] = "L'(E,1)"
        else:
            bsd["lder_name"] = "L(E,1)"

        bsd["reg"] = self.regulator
        bsd["omega"] = self.real_period
        bsd["sha"] = int(0.1 + self.sha_an)
        bsd["lder"] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == "990h":
            data["Gamma0optimal"] = bool(self.number == 3)
        else:
            data["Gamma0optimal"] = bool(self.number == 1)

        data["p_adic_data_exists"] = False
        if data["Gamma0optimal"]:
            data["p_adic_data_exists"] = (padic_db().find({"lmfdb_iso": self.lmfdb_iso}).count()) > 0
        data["p_adic_primes"] = [p for p in sage.all.prime_range(5, 100) if self.E.is_ordinary(p) and not p.divides(N)]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # used to crash on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p["p"] = p
            local_data_p["tamagawa_number"] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p["kodaira_symbol"] = web_latex(local_info.kodaira_symbol()).replace("$", "")
            local_data_p["reduction_type"] = local_info.bad_reduction_type()
            local_data_p["ord_cond"] = local_info.conductor_valuation()
            local_data_p["ord_disc"] = local_info.discriminant_valuation()
            local_data_p["ord_den_j"] = max(0, -self.E.j_invariant().valuation(p))
            local_data.append(local_data_p)

        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [latex(cp) if len(cp) < 2 else "(" + latex(cp) + ")" for cp in cp_fac]
        bsd["tamagawa_factors"] = r"\cdot".join(cp_fac)
        bsd["tamagawa_product"] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data["newform"] = web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso)
        newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.friends = [
            ("Isogeny class " + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            (
                "Minimal quadratic twist %s %s" % (data["minq_info"], data["minq_label"]),
                url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number),
            ),
            ("All twists ", url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ("L-function", url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)),
        ]
        if not self.cm:
            if N <= 300:
                self.friends += [
                    (
                        "Symmetric square L-function",
                        url_for("l_functions.l_function_ec_sym_page", power="2", label=self.lmfdb_iso),
                    )
                ]
            if N <= 50:
                self.friends += [
                    (
                        "Symmetric cube L-function",
                        url_for("l_functions.l_function_ec_sym_page", power="3", label=self.lmfdb_iso),
                    )
                ]
        if newform_exists_in_db:
            self.friends += [("Modular form " + self.newform_label, self.newform_link)]

        self.downloads = [
            ("Download coefficients of q-expansion", url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)),
            ("Download all stored data", url_for(".download_EC_all", label=self.lmfdb_label)),
            (
                "Download Magma code",
                url_for(
                    ".ec_code_download",
                    conductor=cond,
                    iso=iso,
                    number=num,
                    label=self.lmfdb_label,
                    download_type="magma",
                ),
            ),
            (
                "Download Sage code",
                url_for(
                    ".ec_code_download",
                    conductor=cond,
                    iso=iso,
                    number=num,
                    label=self.lmfdb_label,
                    download_type="sage",
                ),
            ),
            (
                "Download GP code",
                url_for(
                    ".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type="gp"
                ),
            ),
        ]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [
            ("Label", self.lmfdb_label),
            (None, self.plot_link),
            ("Conductor", "\(%s\)" % data["conductor"]),
            ("Discriminant", "\(%s\)" % data["disc"]),
            ("j-invariant", "%s" % data["j_inv_latex"]),
            ("CM", "%s" % data["CM"]),
            ("Rank", "\(%s\)" % mw["rank"]),
            ("Torsion Structure", "\(%s\)" % mw["tor_struct"]),
        ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [
            ("Elliptic Curves", url_for("ecnf.index")),
            ("$\Q$", url_for(".rational_elliptic_curves")),
            ("%s" % N, url_for(".by_conductor", conductor=N)),
            ("%s" % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            ("%s" % num, " "),
        ]

    def code(self):
        if self._code == None:
            self.make_code_snippets()
        return self._code

    def make_code_snippets(self):
        # read in code.yaml from current directory:

        _curdir = os.path.dirname(os.path.abspath(__file__))
        self._code = yaml.load(open(os.path.join(_curdir, "code.yaml")))

        # Fill in placeholders for this specific curve:

        for lang in ["sage", "pari", "magma"]:
            self._code["curve"][lang] = self._code["curve"][lang] % (self.data["ainvs"], self.label)

        for k in self._code:
            if k != "prompt":
                for lang in self._code[k]:
                    self._code[k][lang] = self._code[k][lang].split("\n")
                    # remove final empty line
                    if len(self._code[k][lang][-1]) == 0:
                        self._code[k][lang] = self._code[k][lang][:-1]
コード例 #11
0
class WebEC(object):
    """
    Class for an elliptic curve over Q
    """
    def __init__(self, dbdata):
        """
        Arguments:

            - dbdata: the data from the database
        """
        logger.debug("Constructing an instance of ECisog_class")
        self.__dict__.update(dbdata)
        # Next lines because the hyphens make trouble
        self.xintcoords = parse_list(
            dbdata['x-coordinates_of_integral_points'])
        self.non_surjective_primes = dbdata['non-surjective_primes']
        # Next lines because the python identifiers cannot start with 2
        self.twoadic_index = dbdata['2adic_index']
        self.twoadic_log_level = dbdata['2adic_log_level']
        self.twoadic_gens = dbdata['2adic_gens']
        self.twoadic_label = dbdata['2adic_label']
        # All other fields are handled here
        self.make_curve()

    @staticmethod
    def by_label(label):
        """
        Searches for a specific elliptic curve in the curves
        collection by its label, which can be either in LMFDB or
        Cremona format.
        """
        try:
            N, iso, number = split_lmfdb_label(label)
            data = db_ec().find_one({"lmfdb_label": label})
        except AttributeError:
            try:
                N, iso, number = split_cremona_label(label)
                data = db_ec().find_one({"label": label})
            except AttributeError:
                return "Invalid label"  # caller must catch this and raise an error

        if data:
            return WebEC(data)
        return "Curve not found"  # caller must catch this and raise an error

    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data['ainvs'] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data['ainvs'])
        data['equation'] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data['conductor'] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data['j_invariant'] = QQ(str(self.jinv))
        except KeyError:
            data['j_invariant'] = self.E.j_invariant()
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        data['disc'] = D = self.E.discriminant()
        data['disc_latex'] = web_latex(data['disc'])
        data['disc_factor'] = latex(data['disc'].factor())
        data['cond_factor'] = latex(N.factor())
        data['cond_latex'] = web_latex(N)

        # CM and endomorphism ring

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']

        # modular degree

        try:
            data['degree'] = self.degree
        except AttributeError:
            try:
                data['degree'] = self.E.modular_degree()
            except RuntimeError:
                data['degree']  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve()
        from sage.libs.pari.all import PariError
        try:
            minq, minqD = self.E.minimal_quadratic_twist()
        except PariError:  # this does occur with 164411a1
            ec.debug(
                "PariError computing minimal quadratic twist of elliptic curve %s"
                % lmfdb_label)
            minq = self.E
            minqD = 1
        data['minq_D'] = minqD
        if self.E == minq:
            data['minq_label'] = self.lmfdb_label
            data['minq_info'] = '(itself)'
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data['minq_label'] = db_ec().find_one({'ainvs':
                                                   minq_ainvs})['lmfdb_label']
            data['minq_info'] = '(by %s)' % minqD

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw['rank'] = self.rank
        try:
            self.generators = [self.E(g) for g in parse_points(self.gens)]
            mw['generators'] = [web_latex(P.xy()) for P in self.generators]
            mw['heights'] = [P.height() for P in self.generators]
        except AttributeError:
            mw['generators'] = ''
            mw['heights'] = []

        # Torsion subgroup: order, structure, generators

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(self.E(g).xy())
                for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data['galois_images'] = [
                trim_galois_image_code(s) for s in self.galois_images
            ]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_surjective_primes'],
                           data['galois_images'])]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"
        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0
        data['p_adic_primes'] = [
            p for p in sage.all.prime_range(5, 100)
            if self.E.is_ordinary(p) and not p.divides(N)
        ]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # used to crash on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p['p'] = p
            local_data_p['tamagawa_number'] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p['kodaira_symbol'] = web_latex(
                local_info.kodaira_symbol()).replace('$', '')
            local_data_p['reduction_type'] = local_info.bad_reduction_type()
            local_data_p['ord_cond'] = local_info.conductor_valuation()
            local_data_p['ord_disc'] = local_info.discriminant_valuation()
            local_data_p['ord_den_j'] = max(0,
                                            -self.E.j_invariant().valuation(p))
            local_data.append(local_data_p)

        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data['newform'] = web_latex(self.E.q_eigenform(10))

        self.make_code_snippets()

        self.friends = [('Isogeny class ' + self.lmfdb_iso,
                         url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 label=self.lmfdb_label)),
                        ('Symmetric square L-function',
                         url_for("l_functions.l_function_ec_sym_page",
                                 power='2',
                                 label=self.lmfdb_iso)),
                        ('Symmetric 4th power L-function',
                         url_for("l_functions.l_function_ec_sym_page",
                                 power='4',
                                 label=self.lmfdb_iso)),
                        ('Modular form ' + self.lmfdb_iso.replace('.', '.2'),
                         url_for("emf.render_elliptic_modular_forms",
                                 level=int(N),
                                 weight=2,
                                 character=1,
                                 label=iso))]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=100)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label))]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]

    def make_code_snippets(self):
        # read in code.yaml from current directory:

        _curdir = os.path.dirname(os.path.abspath(__file__))
        self.code = yaml.load(open(os.path.join(_curdir, "code.yaml")))

        # Fill in placeholders for this specific curve:

        for lang in ['sage', 'pari', 'magma']:
            self.code['curve'][lang] = self.code['curve'][lang] % (
                self.data['ainvs'], self.label)

        for k in self.code:
            if k != 'prompt':
                for lang in self.code[k]:
                    self.code[k][lang] = self.code[k][lang].split("\n")
                    # remove final empty line
                    if len(self.code[k][lang][-1]) == 0:
                        self.code[k][lang] = self.code[k][lang][:-1]
コード例 #12
0
ファイル: web_ec.py プロジェクト: akoutsianas/lmfdb
class WebEC(object):
    """
    Class for an elliptic curve over Q
    """
    def __init__(self, dbdata):
        """
        Arguments:

            - dbdata: the data from the database
        """
        logger.debug("Constructing an instance of ECisog_class")
        self.__dict__.update(dbdata)
        # Next lines because the hyphens make trouble
        self.xintcoords = split_list(dbdata['x-coordinates_of_integral_points'])
        self.non_surjective_primes = dbdata['non-surjective_primes']
        # Next lines because the python identifiers cannot start with 2
        self.twoadic_index = dbdata['2adic_index']
        self.twoadic_log_level = dbdata['2adic_log_level']
        self.twoadic_gens = dbdata['2adic_gens']
        self.twoadic_label = dbdata['2adic_label']
        # All other fields are handled here
        self.make_curve()

    @staticmethod
    def by_label(label):
        """
        Searches for a specific elliptic curve in the curves
        collection by its label, which can be either in LMFDB or
        Cremona format.
        """
        try:
            N, iso, number = split_lmfdb_label(label)
            data = db_ec().find_one({"lmfdb_label" : label})
        except AttributeError:
            try:
                N, iso, number = split_cremona_label(label)
                data = db_ec().find_one({"label" : label})
            except AttributeError:
                return "Invalid label" # caller must catch this and raise an error

        if data:
            return WebEC(data)
        return "Curve not found" # caller must catch this and raise an error

    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']: # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]
            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1*x + a3)
                d = (b*b + 4*f).sqrt()
                return (x, (-b+d)/2)
            mw['int_points'] = ', '.join(web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [web_latex(tuple(P)) for P in parse_points(self.gens)]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(web_latex(tuple(P)) for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            badprimes = [ZZ(ld['p']) for ld in local_data]
            D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']),ld['ord_cond']) for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']),ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one({'label':minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD==1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree']  =0 # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({'lmfdb_iso':self.lmfdb_iso, 'number':1}, ['anlist','aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            print("Falling back to constructing E")
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p,e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one({'jinv':str(self.E.j_invariant()),
                                                       'ainvs': minq_ainvs},['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20,python_ints=True)
            data['ap'] = self.E.aplist(100,python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace('$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(0,-self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        jfac = Factorization([(ZZ(ld['p']),ld['ord_den_j']) for ld in local_data])

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] =latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD']%4==0:
                d4 = ZZ(data['CMD'])//4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.N(U(1))'),'N(\\mathrm{U}(1))')
        else:
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.SU(2)'),'\\mathrm{SU}(2)')

        data['p_adic_primes'] = [p for i,p in enumerate(sage.all.prime_range(5, 100))
                                 if (N*data['ap'][i]) %p !=0]

        try:
            data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{'p': p,'image': im }
                               for p,im in zip(data['non_surjective_primes'],
                                               data['galois_images'])]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens])
            data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r,r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1+self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)


        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [latex(cp) if len(cp)<2 else '('+latex(cp)+')' for cp in cp_fac]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data['newform'] =  web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(cond,2,1,iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.friends = [
            ('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)),
            ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label))]
        if not self.cm:
            if N<=300:
                self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))]
            if N<=50:
                self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label, self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)),
                          ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)),
                          ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')),
                          ('Download Sage code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')),
                          ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))
        ]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label),
                           (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])
                           ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                           ('$\Q$', url_for(".rational_elliptic_curves")),
                           ('%s' % N, url_for(".by_conductor", conductor=N)),
                           ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
                           ('%s' % num,' ')]

    def code(self):
        if self._code == None:
            self.make_code_snippets()
        return self._code

    def make_code_snippets(self):
        # read in code.yaml from current directory:

        _curdir = os.path.dirname(os.path.abspath(__file__))
        self._code =  yaml.load(open(os.path.join(_curdir, "code.yaml")))

        # Fill in placeholders for this specific curve:

        for lang in ['sage', 'pari', 'magma']:
            self._code['curve'][lang] = self._code['curve'][lang] % (self.data['ainvs'],self.label)
        return
        for k in self._code:
            if k != 'prompt':
                for lang in self._code[k]:
                    self._code[k][lang] = self._code[k][lang].split("\n")
                    # remove final empty line
                    if len(self._code[k][lang][-1])==0:
                        self._code[k][lang] = self._code[k][lang][:-1]