コード例 #1
0
def string_to_list_of_solutions(s):
    r"""
    Used internally by the symbolic solve command to convert the output
    of Maxima's solve command to a list of solutions in Sage's symbolic
    package.

    EXAMPLES:

    We derive the (monic) quadratic formula::

        sage: var('x,a,b')
        (x, a, b)
        sage: solve(x^2 + a*x + b == 0, x)
        [x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]

    Behind the scenes when the above is evaluated the function
    :func:`string_to_list_of_solutions` is called with input the
    string `s` below::

        sage: s = '[x=-(sqrt(a^2-4*b)+a)/2,x=(sqrt(a^2-4*b)-a)/2]'
        sage: sage.symbolic.relation.string_to_list_of_solutions(s)
         [x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]
    """
    from sage.categories.all import Objects
    from sage.structure.sequence import Sequence
    from sage.calculus.calculus import symbolic_expression_from_maxima_string
    v = symbolic_expression_from_maxima_string(s, equals_sub=True)
    return Sequence(v, universe=Objects(), cr_str=True)
コード例 #2
0
ファイル: relation.py プロジェクト: novoselt/sage
def string_to_list_of_solutions(s):
    r"""
    Used internally by the symbolic solve command to convert the output
    of Maxima's solve command to a list of solutions in Sage's symbolic
    package.

    EXAMPLES:

    We derive the (monic) quadratic formula::

        sage: var('x,a,b')
        (x, a, b)
        sage: solve(x^2 + a*x + b == 0, x)
        [x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]

    Behind the scenes when the above is evaluated the function
    :func:`string_to_list_of_solutions` is called with input the
    string `s` below::

        sage: s = '[x=-(sqrt(a^2-4*b)+a)/2,x=(sqrt(a^2-4*b)-a)/2]'
        sage: sage.symbolic.relation.string_to_list_of_solutions(s)
         [x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]
    """
    from sage.categories.all import Objects
    from sage.structure.sequence import Sequence
    from sage.calculus.calculus import symbolic_expression_from_maxima_string
    v = symbolic_expression_from_maxima_string(s, equals_sub=True)
    return Sequence(v, universe=Objects(), cr_str=True)