コード例 #1
0
    def __init__(self, m, n):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: C = ColoredPermutations(4, 3)
            sage: TestSuite(C).run()
            sage: C = ColoredPermutations(2, 3)
            sage: TestSuite(C).run()
            sage: C = ColoredPermutations(1, 3)
            sage: TestSuite(C).run()
        """
        if m <= 0:
            raise ValueError("m must be a positive integer")
        self._m = ZZ(m)
        self._n = ZZ(n)
        self._C = IntegerModRing(self._m)
        self._P = Permutations(self._n)

        if self._m == 1 or self._m == 2:
            from sage.categories.finite_coxeter_groups import FiniteCoxeterGroups
            category = FiniteCoxeterGroups().Irreducible()
        else:
            from sage.categories.complex_reflection_groups import ComplexReflectionGroups
            category = ComplexReflectionGroups().Finite().Irreducible(
            ).WellGenerated()
        Parent.__init__(self, category=category)
コード例 #2
0
    def __init__(self, cartan_type):
        """
        Construct this Coxeter group as a Sage permutation group, by
        fetching the permutation representation of the generators from
        Chevie's database.

        TESTS::

            sage: from sage.combinat.root_system.coxeter_group import CoxeterGroupAsPermutationGroup
            sage: W = CoxeterGroupAsPermutationGroup(CartanType(["H",3])) # optional - chevie
            sage: TestSuite(W).run()             # optional - chevie
        """
        assert cartan_type.is_finite()
        assert cartan_type.is_irreducible()
        self._semi_simple_rank = cartan_type.n
        from sage.interfaces.gap3 import gap3
        gap3._start()
        gap3.load_package("chevie")
        self._gap_group = gap3('CoxeterGroup("%s",%s)' %
                               (cartan_type.letter, cartan_type.n))
        # Following #9032, x.N is an alias for x.numerical_approx in every Sage object ...
        N = self._gap_group.__getattr__("N").sage()
        generators = [str(x) for x in self._gap_group.generators]
        self._is_positive_root = [None] + [True] * N + [False] * N
        PermutationGroup_generic.__init__(self,
                                          gens=generators,
                                          category=Category.join([
                                              FinitePermutationGroups(),
                                              FiniteCoxeterGroups()
                                          ]))
コード例 #3
0
    def super_categories(self):
        r"""
        EXAMPLES::

            sage: FiniteWeylGroups().super_categories()
            [Category of weyl groups, Category of finite coxeter groups]
        """
        return [WeylGroups(), FiniteCoxeterGroups()]
コード例 #4
0
ファイル: colored_permutations.py プロジェクト: wdv4758h/sage
    def __init__(self, n):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: S = SignedPermutations(4)
            sage: TestSuite(S).run()
        """
        ColoredPermutations.__init__(self, 2, n, FiniteCoxeterGroups())