コード例 #1
0
    def __init__(self, n, k, constraints, category=None):
        """
        EXAMPLES::

            sage: IV = IntegerVectors(2,3,min_slope=0)
            sage: IV == loads(dumps(IV))
            True

            sage: v = IntegerVectors(2,3,min_slope=0).first(); v
            [0, 1, 1]
            sage: type(v)
            <type 'list'>

        TESTS::

            sage: IV.min_length
            3
            sage: IV.max_length
            3
            sage: floor = IV.floor
            sage: [floor(i) for i in range(1,10)]
            [0, 0, 0, 0, 0, 0, 0, 0, 0]
            sage: ceiling = IV.ceiling
            sage: [ceiling(i) for i in range(1,5)]
            [inf, inf, inf, inf]
            sage: IV.min_slope
            0
            sage: IV.max_slope
            inf

            sage: IV = IntegerVectors(3, 10, inner=[4,1,3], min_part=2)
            sage: floor = IV.floor
            sage: floor(0), floor(1), floor(2)
            (4, 2, 3)

            sage: IV = IntegerVectors(3, 10, outer=[4,1,3], max_part=3)
            sage: ceiling = IV.ceiling
            sage: ceiling(0), ceiling(1), ceiling(2)
            (3, 1, 3)
        """
        self.n = n
        self.k = k

        args = constraints.copy()

        if self.k >= 0:
            args['length'] = self.k

        if 'outer' in args:
            args['ceiling'] = args['outer']
            del args['outer']
        if 'inner' in args:
            args['floor'] = args['inner']
            del args['inner']
        self._constraints = constraints
        IntegerListsLex.__init__(self,
                                 n,
                                 element_constructor=list,
                                 category=category,
                                 **args)
コード例 #2
0
ファイル: integer_vector.py プロジェクト: Babyll/sage
    def __init__(self, n, k, constraints, category=None):

        """
        EXAMPLES::

            sage: IV = IntegerVectors(2,3,min_slope=0)
            sage: IV == loads(dumps(IV))
            True

            sage: v = IntegerVectors(2,3,min_slope=0).first(); v
            [0, 1, 1]
            sage: type(v)
            <type 'list'>

        TESTS::

            sage: IV.min_length
            3
            sage: IV.max_length
            3
            sage: floor = IV.floor
            sage: [floor(i) for i in range(1,10)]
            [0, 0, 0, 0, 0, 0, 0, 0, 0]
            sage: ceiling = IV.ceiling
            sage: [ceiling(i) for i in range(1,5)]
            [inf, inf, inf, inf]
            sage: IV.min_slope
            0
            sage: IV.max_slope
            inf

            sage: IV = IntegerVectors(3, 10, inner=[4,1,3], min_part=2)
            sage: floor = IV.floor
            sage: floor(0), floor(1), floor(2)
            (4, 2, 3)

            sage: IV = IntegerVectors(3, 10, outer=[4,1,3], max_part=3)
            sage: ceiling = IV.ceiling
            sage: ceiling(0), ceiling(1), ceiling(2)
            (3, 1, 3)
        """
        self.n = n
        self.k = k

        args = constraints.copy()

        if self.k >= 0:
            args['length'] = self.k

        if 'outer' in args:
            args['ceiling'] = args['outer']
            del args['outer']
        if 'inner' in args:
            args['floor'] = args['inner']
            del args['inner']
        self._constraints = constraints
        IntegerListsLex.__init__(self, n, element_constructor=list,
                                 category=category, **args)
コード例 #3
0
ファイル: schur_algebra.py プロジェクト: BrentBaccala/sage
    def one(self):
        """
        Return the element `1` of ``self``.

        EXAMPLES::

            sage: S = SchurAlgebra(ZZ, 2, 2)
            sage: e = S.one(); e
            S((1, 1), (1, 1)) + S((1, 2), (1, 2)) + S((2, 2), (2, 2))

            sage: x = S.an_element()
            sage: x * e == x
            True
            sage: all(e * x == x for x in S.basis())
            True

            sage: S = SchurAlgebra(ZZ, 4, 4)
            sage: e = S.one()
            sage: x = S.an_element()
            sage: x * e == x
            True
        """
        tt = IntegerListsLex(length=self._r,
                             min_part=1,
                             max_part=self._n,
                             min_slope=0)
        words = [tuple(u) for u in tt]
        return self.sum(self._monomial((w, w)) for w in words)
コード例 #4
0
ファイル: integer_matrices.py プロジェクト: yunboliu27/sage
def integer_matrices_generator(row_sums, column_sums):
    r"""
    Recursively generate the integer matrices with the prescribed row sums and
    column sums.

    INPUT:

    - ``row_sums`` -- list or tuple
    - ``column_sums`` -- list or tuple

    OUTPUT:

    - an iterator producing a list of lists

    EXAMPLES::

        sage: from sage.combinat.integer_matrices import integer_matrices_generator
        sage: iter = integer_matrices_generator([3,2,2], [2,5]); iter
        <generator object integer_matrices_generator at ...>
        sage: for m in iter: print(m)
        [[2, 1], [0, 2], [0, 2]]
        [[1, 2], [1, 1], [0, 2]]
        [[1, 2], [0, 2], [1, 1]]
        [[0, 3], [2, 0], [0, 2]]
        [[0, 3], [1, 1], [1, 1]]
        [[0, 3], [0, 2], [2, 0]]

    """
    row_sums = list(row_sums)
    column_sums = list(column_sums)
    if sum(row_sums) != sum(column_sums):
        raise StopIteration
    if len(row_sums) == 0:
        yield []
    elif len(row_sums) == 1:
        yield [column_sums]
    else:
        for comp in IntegerListsLex(n=row_sums[0],
                                    length=len(column_sums),
                                    ceiling=column_sums):
            t = [column_sums[i] - ci for (i, ci) in enumerate(comp)]
            for mat in integer_matrices_generator(row_sums[1:], t):
                yield [list(comp)] + mat
コード例 #5
0
ファイル: nn.py プロジェクト: timgates42/sage
def IntegerListsNN(**kwds):
    """
    Lists of nonnegative integers with constraints.

    This function returns the union of ``IntegerListsLex(n, **kwds)``
    where `n` ranges over all nonnegative integers.

    EXAMPLES::

        sage: from sage.combinat.integer_lists.nn import IntegerListsNN
        sage: L = IntegerListsNN(max_length=3, max_slope=-1)
        sage: L
        Disjoint union of Lazy family (<lambda>(i))_{i in Non negative integer semiring}
        sage: it = iter(L)
        sage: for _ in range(20):
        ....:     print(next(it))
        []
        [1]
        [2]
        [3]
        [2, 1]
        [4]
        [3, 1]
        [5]
        [4, 1]
        [3, 2]
        [6]
        [5, 1]
        [4, 2]
        [3, 2, 1]
        [7]
        [6, 1]
        [5, 2]
        [4, 3]
        [4, 2, 1]
        [8]
    """
    return DisjointUnionEnumeratedSets(
        Family(NN, lambda i: IntegerListsLex(i, **kwds)))
コード例 #6
0
def cantor_product(*args, **kwds):
    r"""
    Return an iterator over the product of the inputs along the diagonals a la
    :wikipedia:`Cantor pairing <Pairing_function#Cantor_pairing_function>`.

    INPUT:

    - a certain number of iterables

    - ``repeat`` -- an optional integer. If it is provided, the input is
      repeated ``repeat`` times.

    Other keyword arguments are passed to
    :class:`sage.combinat.integer_lists.invlex.IntegerListsLex`.

    EXAMPLES::

        sage: from sage.misc.mrange import cantor_product
        sage: list(cantor_product([0, 1], repeat=3))
        [(0, 0, 0),
         (1, 0, 0),
         (0, 1, 0),
         (0, 0, 1),
         (1, 1, 0),
         (1, 0, 1),
         (0, 1, 1),
         (1, 1, 1)]
        sage: list(cantor_product([0, 1], [0, 1, 2, 3]))
        [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3)]

    Infinite iterators are valid input as well::

       sage: from itertools import islice
       sage: list(islice(cantor_product(ZZ, QQ), 14r))
        [(0, 0),
         (1, 0),
         (0, 1),
         (-1, 0),
         (1, 1),
         (0, -1),
         (2, 0),
         (-1, 1),
         (1, -1),
         (0, 1/2),
         (-2, 0),
         (2, 1),
         (-1, -1),
         (1, 1/2)]

    TESTS::

        sage: C = cantor_product([0, 1], [0, 1, 2, 3], [0, 1, 2])
        sage: sum(1 for _ in C) == 2*4*3
        True

        sage: from itertools import count
        sage: list(cantor_product([], count()))
        []
        sage: list(cantor_product(count(), [], count()))
        []

        sage: list(cantor_product(count(), repeat=0))
        [()]

        sage: next(cantor_product(count(), repeat=-1))
        Traceback (most recent call last):
        ...
        ValueError: repeat argument cannot be negative
        sage: next(cantor_product(count(), toto='hey'))
        Traceback (most recent call last):
        ...
        TypeError: __init__() got an unexpected keyword argument 'toto'

    ::

        sage: list(cantor_product(srange(5), repeat=2, min_slope=1))
        [(0, 1), (0, 2), (1, 2), (0, 3), (1, 3),
         (0, 4), (2, 3), (1, 4), (2, 4), (3, 4)]

    Check that :trac:`24897` is fixed::

        sage: from sage.misc.mrange import cantor_product
        sage: list(cantor_product([1]))
        [(1,)]
        sage: list(cantor_product([1], repeat=2))
        [(1, 1)]
        sage: list(cantor_product([1], [1,2]))
        [(1, 1), (1, 2)]
        sage: list(cantor_product([1,2], [1]))
        [(1, 1), (2, 1)]
    """
    from itertools import count
    from sage.combinat.integer_lists import IntegerListsLex

    m = len(args)                         # numer of factors
    lengths = [None] * m                  # None or length of factors
    data = [[] for _ in range(m)]         # the initial slice of each factor
    iterators = [iter(a) for a in args]   # the iterators
    repeat = int(kwds.pop('repeat', 1))
    if repeat == 0:
        yield ()
        return
    elif repeat < 0:
        raise ValueError("repeat argument cannot be negative")
    mm = m * repeat

    for n in count(0):
        # try to add one more term to each bin
        for i, a in enumerate(iterators):
            if lengths[i] is None:
                try:
                    data[i].append(next(a))
                except StopIteration:
                    assert len(data[i]) == n
                    if n == 0:
                        return
                    lengths[i] = n

        # iterate through what we have
        ceiling = [n if lengths[i] is None else lengths[i] - 1
                   for i in range(m)] * repeat
        for v in IntegerListsLex(n, length=mm, ceiling=ceiling, **kwds):
            yield tuple(data[i % m][v[i]] for i in range(mm))

        if all(l is not None for l in lengths) and repeat * sum(l - 1 for l in lengths) <= n:
            return
コード例 #7
0
ファイル: integer_vector.py プロジェクト: EnterStudios/sage-1
    def __iter__(self):
        """
        EXAMPLES::

            sage: IntegerVectors(-1, 0, min_part = 1).list()
            []
            sage: IntegerVectors(-1, 2, min_part = 1).list()
            []
            sage: IntegerVectors(0, 0, min_part=1).list()
            [[]]
            sage: IntegerVectors(3, 0, min_part=1).list()
            []
            sage: IntegerVectors(0, 1, min_part=1).list()
            []
            sage: IntegerVectors(2, 2, min_part=1).list()
            [[1, 1]]
            sage: IntegerVectors(2, 3, min_part=1).list()
            []
            sage: IntegerVectors(4, 2, min_part=1).list()
            [[3, 1], [2, 2], [1, 3]]

        ::

            sage: IntegerVectors(0, 3, outer=[0,0,0]).list()
            [[0, 0, 0]]
            sage: IntegerVectors(1, 3, outer=[0,0,0]).list()
            []
            sage: IntegerVectors(2, 3, outer=[0,2,0]).list()
            [[0, 2, 0]]
            sage: IntegerVectors(2, 3, outer=[1,2,1]).list()
            [[1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1]]
            sage: IntegerVectors(2, 3, outer=[1,1,1]).list()
            [[1, 1, 0], [1, 0, 1], [0, 1, 1]]
            sage: IntegerVectors(2, 5, outer=[1,1,1,1,1]).list()
            [[1, 1, 0, 0, 0],
             [1, 0, 1, 0, 0],
             [1, 0, 0, 1, 0],
             [1, 0, 0, 0, 1],
             [0, 1, 1, 0, 0],
             [0, 1, 0, 1, 0],
             [0, 1, 0, 0, 1],
             [0, 0, 1, 1, 0],
             [0, 0, 1, 0, 1],
             [0, 0, 0, 1, 1]]

        ::

            sage: iv = [ IntegerVectors(n, k) for n in range(-2, 7) for k in range(7) ]
            sage: all(map(lambda x: x.cardinality() == len(x.list()), iv))
            True
            sage: essai = [[1,1,1], [2,5,6], [6,5,2]]
            sage: iv = [ IntegerVectors(x[0], x[1], max_part = x[2]-1) for x in essai ]
            sage: all(map(lambda x: x.cardinality() == len(x.list()), iv))
            True
        """
        if self.n is None:
            if self.k is not None and 'max_part' in self.constraints:
                n_list = range((self.constraints['max_part'] + 1) * self.k)
            else:
                n_list = NN
        else:
            n_list = [self.n]
        for n in n_list:
            for x in IntegerListsLex(n, check=False, **self.constraints):
                yield self.element_class(self, x, check=False)