コード例 #1
0
ファイル: cm.py プロジェクト: sheldoncooper07/sage
def hilbert_class_polynomial(D, algorithm=None):
    r"""
    Return the Hilbert class polynomial for discriminant `D`.

    INPUT:

    - ``D`` (int) -- a negative integer congruent to 0 or 1 modulo 4.

    - ``algorithm`` (string, default None).

    OUTPUT:

    (integer polynomial) The Hilbert class polynomial for the
    discriminant `D`.

    ALGORITHM:

    - If ``algorithm`` = "arb" (default): Use Arb's implementation which uses complex interval arithmetic.

    - If ``algorithm`` = "sage": Use complex approximations to the roots.

    - If ``algorithm`` = "magma": Call the appropriate Magma function (if available).

    AUTHORS:

    - Sage implementation originally by Eduardo Ocampo Alvarez and
      AndreyTimofeev

    - Sage implementation corrected by John Cremona (using corrected precision bounds from Andreas Enge)

    - Magma implementation by David Kohel

    EXAMPLES::

        sage: hilbert_class_polynomial(-4)
        x - 1728
        sage: hilbert_class_polynomial(-7)
        x + 3375
        sage: hilbert_class_polynomial(-23)
        x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
        sage: hilbert_class_polynomial(-37*4)
        x^2 - 39660183801072000*x - 7898242515936467904000000
        sage: hilbert_class_polynomial(-37*4, algorithm="magma") # optional - magma
        x^2 - 39660183801072000*x - 7898242515936467904000000
        sage: hilbert_class_polynomial(-163)
        x + 262537412640768000
        sage: hilbert_class_polynomial(-163, algorithm="sage")
        x + 262537412640768000
        sage: hilbert_class_polynomial(-163, algorithm="magma") # optional - magma
        x + 262537412640768000

    TESTS::

        sage: all([hilbert_class_polynomial(d, algorithm="arb") == \
        ....:      hilbert_class_polynomial(d, algorithm="sage") \
        ....:        for d in range(-1,-100,-1) if d%4 in [0,1]])
        True

    """
    if algorithm is None:
        algorithm = "arb"

    D = Integer(D)
    if D >= 0:
        raise ValueError("D (=%s) must be negative" % D)
    if not (D % 4 in [0, 1]):
        raise ValueError("D (=%s) must be a discriminant" % D)

    if algorithm == "arb":
        import sage.libs.arb.arith
        return sage.libs.arb.arith.hilbert_class_polynomial(D)

    if algorithm == "magma":
        magma.eval("R<x> := PolynomialRing(IntegerRing())")
        f = str(magma.eval("HilbertClassPolynomial(%s)" % D))
        return IntegerRing()['x'](f)

    if algorithm != "sage":
        raise ValueError("%s is not a valid algorithm" % algorithm)

    from sage.quadratic_forms.binary_qf import BinaryQF_reduced_representatives
    from sage.rings.all import RR, ComplexField
    from sage.functions.all import elliptic_j

    # get all primitive reduced quadratic forms, (necessary to exclude
    # imprimitive forms when D is not a fundamental discriminant):

    rqf = BinaryQF_reduced_representatives(D, primitive_only=True)

    # compute needed precision
    #
    # NB: [https://arxiv.org/abs/0802.0979v1], quoting Enge (2006), is
    # incorrect.  Enge writes (2009-04-20 email to John Cremona) "The
    # source is my paper on class polynomials
    # [https://hal.inria.fr/inria-00001040] It was pointed out to me by
    # the referee after ANTS that the constant given there was
    # wrong. The final version contains a corrected constant on p.7
    # which is consistent with your example. It says:

    # "The logarithm of the absolute value of the coefficient in front
    # of X^j is bounded above by
    #
    # log (2*k_2) * h + pi * sqrt(|D|) * sum (1/A_i)
    #
    # independently of j", where k_2 \approx 10.163.

    h = len(rqf)  # class number
    c1 = 3.05682737291380  # log(2*10.63)
    c2 = sum([1 / RR(qf[0]) for qf in rqf], RR(0))
    prec = c2 * RR(3.142) * RR(D).abs().sqrt() + h * c1  # bound on log
    prec = prec * 1.45  # bound on log_2 (1/log(2) = 1.44..)
    prec = 10 + prec.ceil()  # allow for rounding error

    # set appropriate precision for further computing

    Dsqrt = D.sqrt(prec=prec)
    R = ComplexField(prec)['t']
    t = R.gen()
    pol = R(1)
    for qf in rqf:
        a, b, c = list(qf)
        tau = (b + Dsqrt) / (a << 1)
        pol *= (t - elliptic_j(tau))

    coeffs = [cof.real().round() for cof in pol.coefficients(sparse=False)]
    return IntegerRing()['x'](coeffs)
コード例 #2
0
ファイル: cm.py プロジェクト: mcognetta/sage
def hilbert_class_polynomial(D, algorithm=None):
    r"""
    Returns the Hilbert class polynomial for discriminant `D`.

    INPUT:

    - ``D`` (int) -- a negative integer congruent to 0 or 1 modulo 4.

    - ``algorithm`` (string, default None).

    OUTPUT:

    (integer polynomial) The Hilbert class polynomial for the
    discriminant `D`.

    ALGORITHM:

    - If ``algorithm`` = "arb" (default): Use Arb's implementation which uses complex interval arithmetic.

    - If ``algorithm`` = "sage": Use complex approximations to the roots.

    - If ``algorithm`` = "magma": Call the appropriate Magma function (if available).

    AUTHORS:

    - Sage implementation originally by Eduardo Ocampo Alvarez and
      AndreyTimofeev

    - Sage implementation corrected by John Cremona (using corrected precision bounds from Andreas Enge)

    - Magma implementation by David Kohel

    EXAMPLES::

        sage: hilbert_class_polynomial(-4)
        x - 1728
        sage: hilbert_class_polynomial(-7)
        x + 3375
        sage: hilbert_class_polynomial(-23)
        x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
        sage: hilbert_class_polynomial(-37*4)
        x^2 - 39660183801072000*x - 7898242515936467904000000
        sage: hilbert_class_polynomial(-37*4, algorithm="magma") # optional - magma
        x^2 - 39660183801072000*x - 7898242515936467904000000
        sage: hilbert_class_polynomial(-163)
        x + 262537412640768000
        sage: hilbert_class_polynomial(-163, algorithm="sage")
        x + 262537412640768000
        sage: hilbert_class_polynomial(-163, algorithm="magma") # optional - magma
        x + 262537412640768000

    TESTS::

        sage: all([hilbert_class_polynomial(d, algorithm="arb") == \
        ....:      hilbert_class_polynomial(d, algorithm="sage") \
        ....:        for d in range(-1,-100,-1) if d%4 in [0,1]])
        True

    """
    if algorithm is None:
        algorithm = "arb"

    D = Integer(D)
    if D >= 0:
        raise ValueError("D (=%s) must be negative"%D)
    if not (D%4 in [0,1]):
         raise ValueError("D (=%s) must be a discriminant"%D)

    if algorithm == "arb":
        import sage.libs.arb.arith
        return sage.libs.arb.arith.hilbert_class_polynomial(D)

    if algorithm == "magma":
        magma.eval("R<x> := PolynomialRing(IntegerRing())")
        f = str(magma.eval("HilbertClassPolynomial(%s)"%D))
        return IntegerRing()['x'](f)

    if algorithm != "sage":
        raise ValueError("%s is not a valid algorithm"%algorithm)

    from sage.quadratic_forms.binary_qf import BinaryQF_reduced_representatives
    from sage.rings.all import RR, ZZ, ComplexField
    from sage.functions.all import elliptic_j

    # get all primitive reduced quadratic forms, (necessary to exclude
    # imprimitive forms when D is not a fundamental discriminant):

    rqf = BinaryQF_reduced_representatives(D, primitive_only=True)

    # compute needed precision
    #
    # NB: [http://arxiv.org/abs/0802.0979v1], quoting Enge (2006), is
    # incorrect.  Enge writes (2009-04-20 email to John Cremona) "The
    # source is my paper on class polynomials
    # [http://hal.inria.fr/inria-00001040] It was pointed out to me by
    # the referee after ANTS that the constant given there was
    # wrong. The final version contains a corrected constant on p.7
    # which is consistent with your example. It says:

    # "The logarithm of the absolute value of the coefficient in front
    # of X^j is bounded above by
    #
    # log (2*k_2) * h + pi * sqrt(|D|) * sum (1/A_i)
    #
    # independently of j", where k_2 \approx 10.163.

    h = len(rqf) # class number
    c1 = 3.05682737291380 # log(2*10.63)
    c2 = sum([1/RR(qf[0]) for qf in rqf], RR(0))
    prec =  c2*RR(3.142)*RR(D).abs().sqrt() + h*c1  # bound on log
    prec = prec * 1.45   # bound on log_2 (1/log(2) = 1.44..)
    prec = 10 + prec.ceil()  # allow for rounding error

    # set appropriate precision for further computing

    Dsqrt = D.sqrt(prec=prec)
    R = ComplexField(prec)['t']
    t = R.gen()
    pol = R(1)
    for qf in rqf:
        a, b, c = list(qf)
        tau = (b+Dsqrt)/(a<<1)
        pol *=  (t - elliptic_j(tau))

    coeffs = [cof.real().round() for cof in pol.coefficients(sparse=False)]
    return IntegerRing()['x'](coeffs)