def vectorconf_to_hyperplane_arrangement(vector_conf, backend=None): r""" Return the hyperplane arrangement associated to the vector configuration ``vector_conf``. INPUT: - ``vector_conf`` -- a vector configuration - ``backend`` -- string (default = ``None``). The backend to use. OUTPUT: A hyperplane arrangement EXAMPLES: The arrangement `A(10,60)_3` with 10 hyperplanes is the smallest rank-three simplicial arrangement that is not congruence normal:: sage: from cn_hyperarr.main import * sage: tau = AA((1+sqrt(5))/2) sage: ncn = [[2*tau + 1, 2*tau, tau], [2*tau + 2, 2*tau + 1, tau + 1], ....: [1, 1, 1], [tau + 1, tau + 1, tau], [2*tau, 2*tau, tau], ....: [tau + 1, tau + 1, 1], [1, 1, 0], [0, 1, 0], [1, 0, 0], ....: [tau + 1, tau, tau]] sage: ncn_conf = VectorConfiguration(ncn); sage: ncn_arr = vectorconf_to_hyperplane_arrangement(ncn_conf); ncn_arr Arrangement of 10 hyperplanes of dimension 3 and rank 3 Using normaliz as backend:: sage: ncn_conf_norm = VectorConfiguration(ncn, 'normaliz') # optional - pynormaliz sage: ncn_conf_norm.backend() # optional - pynormaliz 'normaliz' """ if not isinstance(vector_conf, VectorConfiguration): vector_conf = VectorConfiguration(vector_conf, backend=backend) if vector_conf.base_ring() == ZZ: H = HyperplaneArrangements(QQ, names='xyz') else: H = HyperplaneArrangements(vector_conf.base_ring(), names='xyz') x, y, z = H.gens() A = H(backend=vector_conf.backend()) for v in vector_conf: a, b, c = v A = A.add_hyperplane(a * x + b * y + c * z) return A
def inversion_arrangement(self, side='right'): r""" Return the inversion hyperplane arrangement of ``self``. INPUT: - ``side`` -- ``'right'`` (default) or ``'left'`` OUTPUT: A (central) hyperplane arrangement whose hyperplanes correspond to the inversions of ``self`` given as roots. The ``side`` parameter determines on which side to compute the inversions. EXAMPLES:: sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([1, 2, 3, 1, 2]) sage: A = w.inversion_arrangement(); A Arrangement of 5 hyperplanes of dimension 3 and rank 3 sage: A.hyperplanes() (Hyperplane 0*a1 + 0*a2 + a3 + 0, Hyperplane 0*a1 + a2 + 0*a3 + 0, Hyperplane 0*a1 + a2 + a3 + 0, Hyperplane a1 + a2 + 0*a3 + 0, Hyperplane a1 + a2 + a3 + 0) The identity element gives the empty arrangement:: sage: W = WeylGroup(['A',3]) sage: W.one().inversion_arrangement() Empty hyperplane arrangement of dimension 3 """ inv = self.inversions(side=side, inversion_type='roots') from sage.geometry.hyperplane_arrangement.arrangement import HyperplaneArrangements I = self.parent().cartan_type().index_set() from sage.rings.rational_field import QQ H = HyperplaneArrangements(QQ, tuple(['a{}'.format(i) for i in I])) gens = H.gens() if not inv: return H() return H([sum(c * gens[I.index(i)] for (i, c) in root) for root in inv])
def inversion_arrangement(self, side='right'): r""" Return the inversion hyperplane arrangement of ``self``. INPUT: - ``side`` -- ``'right'`` (default) or ``'left'`` OUTPUT: A (central) hyperplane arrangement whose hyperplanes correspond to the inversions of ``self`` given as roots. The ``side`` parameter determines on which side to compute the inversions. EXAMPLES:: sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([1, 2, 3, 1, 2]) sage: A = w.inversion_arrangement(); A Arrangement of 5 hyperplanes of dimension 3 and rank 3 sage: A.hyperplanes() (Hyperplane 0*a1 + 0*a2 + a3 + 0, Hyperplane 0*a1 + a2 + 0*a3 + 0, Hyperplane 0*a1 + a2 + a3 + 0, Hyperplane a1 + a2 + 0*a3 + 0, Hyperplane a1 + a2 + a3 + 0) The identity element gives the empty arrangement:: sage: W = WeylGroup(['A',3]) sage: W.one().inversion_arrangement() Empty hyperplane arrangement of dimension 3 """ inv = self.inversions(side=side, inversion_type='roots') from sage.geometry.hyperplane_arrangement.arrangement import HyperplaneArrangements I = self.parent().cartan_type().index_set() H = HyperplaneArrangements(QQ, tuple(['a{}'.format(i) for i in I])) gens = H.gens() if not inv: return H() return H([sum(c * gens[I.index(i)] for (i, c) in root) for root in inv])