コード例 #1
0
ファイル: lseries_ell.py プロジェクト: Etn40ff/sage
    def twist_zeros(self, n, dmin, dmax):
        r"""
        Return first $n$ real parts of nontrivial zeros of
        $L(E,s,\chi_d)$ for each quadratic character $\chi_d$ with
        $d_{\min} \leq d \leq d_{\max}$.

        \note{The L-series is normalized so that the center of the
        critical strip is 1.}

        INPUT:
            n -- integer
            dmin -- integer
            dmax -- integer

        OUTPUT:
            dict -- keys are the discriminants $d$, and
                    values are list of corresponding zeros.

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: E.lseries().twist_zeros(3, -4, -3)         # long time
            {-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.45853219]}
        """
        from sage.lfunctions.lcalc import lcalc
        return lcalc.twist_zeros(n, dmin, dmax, L=self.__E)
コード例 #2
0
ファイル: lseries_ell.py プロジェクト: manguluka/sage
    def twist_zeros(self, n, dmin, dmax):
        r"""
        Return first `n` real parts of nontrivial zeros of
        `L(E,s,\chi_d)` for each quadratic character `\chi_d` with
        `d_{\min} \leq d \leq d_{\max}`.

        .. note::

            The L-series is normalized so that the center of the
            critical strip is 1.

        INPUT:

        - ``n`` -- integer

        - ``dmin`` -- integer

        - ``dmax`` -- integer

        OUTPUT:

        -   dict -- keys are the discriminants `d`, and
                    values are list of corresponding zeros.

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: E.lseries().twist_zeros(3, -4, -3)         # long time
            {-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.45853219]}
        """
        from sage.lfunctions.lcalc import lcalc
        return lcalc.twist_zeros(n, dmin, dmax, L=self.__E)
コード例 #3
0
ファイル: lseries_ell.py プロジェクト: shrutig/sage
    def twist_zeros(self, n, dmin, dmax):
        r"""
        Return first $n$ real parts of nontrivial zeros of
        $L(E,s,\chi_d)$ for each quadratic character $\chi_d$ with
        $d_{\min} \leq d \leq d_{\max}$.

        \note{The L-series is normalized so that the center of the
        critical strip is 1.}

        INPUT:
            n -- integer
            dmin -- integer
            dmax -- integer

        OUTPUT:
            dict -- keys are the discriminants $d$, and
                    values are list of corresponding zeros.

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: E.lseries().twist_zeros(3, -4, -3)         # long time
              ***   Warning:...new stack size = ...
            {-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.45853219]}
        """
        from sage.lfunctions.lcalc import lcalc
        return lcalc.twist_zeros(n, dmin, dmax, L=self.__E)