コード例 #1
0
    def __init__(self, sides, i_angle, center, options):
        """
        Initialize HyperbolicRegularPolygon.

        EXAMPLES::

            sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon
            sage: print(HyperbolicRegularPolygon(5,pi/2,I, {}))
            Hyperbolic regular polygon (sides=5, i_angle=1/2*pi, center=1.00000000000000*I)
        """
        self.center = CC(center)
        if self.center.imag() <= 0 :
            raise ValueError("center: %s is not a valid point in the upper half plane model of the hyperbolic plane"%(self.center))
        if sides < 3 :
            raise ValueError("degenerated polygons (sides<=2) are not supported")
        if i_angle <=0 or i_angle >= pi:
            raise ValueError("interior angle %s must be in (0, pi) interval"%(i_angle))
        if pi*(sides-2) - sides*i_angle <= 0 :
            raise ValueError("there exists no hyperbolic regular compact polygon, for sides=%s the interior angle must be less than %s"%(sides, pi * (sides-2) / sides))
        self.sides = sides
        self.i_angle = i_angle
        beta = 2 * pi / self.sides # compute the rotation angle to be used ahead
        alpha = self.i_angle / Integer(2)
        I = CC(0, 1)
        # compute using cosine theorem the radius of the circumscribed circle
        # using the triangle formed by the radius and the three known angles
        r = arccosh(cot(alpha) * (1 + cos(beta)) / sin(beta))

        # The first point will be always on the imaginary axis limited
        # to 8 digits for efficiency in the subsequent calculations.
        z_0 = [I*(e**r).n(digits=8)]

        # Compute the dilation isometry used to move the center
        # from I to the imaginary part of the given center.
        scale = self.center.imag()

        # Compute the parabolic isometry to move the center to the
        # real part of the given center.
        h_disp = self.center.real()

        d_z_k = [z_0[0]*scale + h_disp]  #d_k has the points for the polygon in the given center
        z_k = z_0                      #z_k has the Re(z)>0 vertices for the I centered polygon 
        r_z_k = []                     #r_z_k has the Re(z)<0 vertices
        if is_odd(self.sides):
            vert = (self.sides - 1) / 2
        else:
            vert = self.sides / 2 - 1
        for k in range(0, vert):
            # Compute with 8 digits to accelerate calculations
            new_z_k = self._i_rotation(z_k[-1], beta).n(digits=8)
            z_k = z_k + [new_z_k]
            d_z_k = d_z_k + [new_z_k * scale + h_disp]
            r_z_k=[-(new_z_k).conjugate() * scale + h_disp] + r_z_k
        if is_odd(self.sides):
            HyperbolicPolygon.__init__(self, d_z_k + r_z_k, options)
        else:
            z_opo = [I * (e**(-r)).n(digits=8) * scale + h_disp]
            HyperbolicPolygon.__init__(self, d_z_k + z_opo + r_z_k, options)
コード例 #2
0
def disc(self):
    r"""
    Return the discriminant of the quadratic form, defined as

    - `(-1)^n {\rm det}(B)` for even dimension `2n`
    - `{\rm det}(B)/2` for odd dimension

    where `2Q(x) = x^t B x`.

    This agrees with the usual discriminant for binary and ternary quadratic forms.

    EXAMPLES::

        sage: DiagonalQuadraticForm(ZZ, [1]).disc()
        1
        sage: DiagonalQuadraticForm(ZZ, [1,1]).disc()
        -4
        sage: DiagonalQuadraticForm(ZZ, [1,1,1]).disc()
        4
        sage: DiagonalQuadraticForm(ZZ, [1,1,1,1]).disc()
        16

    """
    if is_odd(self.dim()):
      return  self.base_ring()(self.det() / 2)      ## This is not so good for characteristic 2.
    else:
      return (-1)**(self.dim()//2) * self.det()
コード例 #3
0
def disc(self):
    r"""
    Returns the discriminant of the quadratic form, defined as

    - `(-1)^n {\rm det}(B)` for even dimension `2n`
    - `{\rm det}(B)/2` for odd dimension

    where `2Q(x) = x^t B x`.

    This agrees with the usual discriminant for binary and ternary quadratic forms.

    EXAMPLES::

        sage: DiagonalQuadraticForm(ZZ, [1]).disc()
        1
        sage: DiagonalQuadraticForm(ZZ, [1,1]).disc()
        -4
        sage: DiagonalQuadraticForm(ZZ, [1,1,1]).disc()
        4
        sage: DiagonalQuadraticForm(ZZ, [1,1,1,1]).disc()
        16

    """
    if is_odd(self.dim()):
        return self.base_ring()(self.det() / 2)  ## This is not so good for characteristic 2.
    else:
        return (-1) ** (self.dim() // 2) * self.det()
コード例 #4
0
def antiadjoint(self):
    """
    This gives an (integral) form such that its adjoint is the given form.

    EXAMPLES::

        sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
        sage: Q.adjoint().antiadjoint()
        Quadratic form in 3 variables over Integer Ring with coefficients:
        [ 1 0 -1 ]
        [ * 2 -1 ]
        [ * * 5 ]
        sage: Q.antiadjoint()
        Traceback (most recent call last):
        ...
        ValueError: not an adjoint

    """
    try:
      n = self.dim()
      R = self.base_ring()
      d = R(self.disc()**(ZZ(1)/(n-1)))
      if is_odd(n):
        return self.adjoint().scale_by_factor( R(1) / 4 / d**(n-2) )
      else:
        return self.adjoint().scale_by_factor( R(1) / d**(n-2) )
    except TypeError:
      raise ValueError("not an adjoint")
コード例 #5
0
ファイル: lattice.py プロジェクト: nilsskoruppa/psage
    def ev( self):
        """
        Return a pair $alpha, L_{ev}$, where $L_{ev}$
        is isomorphic to the kernel of $L\rightarrow \{\pm 1\}$, 
        $x\mapsto e(\beta(x))$,
        and where $alpha$ is an embedding of $L_{ev}$ into $L$
        whose image is this kernel.

        REMARK
            We have to find the kernel of the map
            $x\mapsto G[x] \equiv \sum_{j\in S}x_2 \bmod 2$.
            Here $S$ is the set of indices $i$ such that
            the $i$-diagonal element of $G$ is odd.
            A basis is given by
            $e_i$ ($i not\in S$) and $e_i + e_j$ ($i \in S$, $i\not=j$)
            and $2e_j$, where $j$ is any fixed index in $S$.
        """
        if self.is_even():
            return self.hom( self.basis(), self.module()), self
        D = self.gram_matrix().diagonal()
        S = [ i for i in range( len(D)) if is_odd(D[i])]
        j = min(S)
        e = self.basis()
        n = len(e)
        form = lambda i: e[i] if i not in S else 2*e[j] if i == j else e[i]+e[j] 
        a = [ form(i) for i in range( n)]
        # A = matrix( a).transpose()
        # return A, Lattice_class( [ self.beta( a[i],a[j]) for i in range(n) for j in range(i,n)])
        Lev = Lattice_class( [ self.beta( a[i],a[j]) for i in range(n) for j in range(i,n)])
        alpha = Lev.hom( a, self.module()) 
        return alpha, Lev
コード例 #6
0
def adjoint(self):
    """
    This gives the adjoint (integral) quadratic form associated to the
    given form, essentially defined by taking the adjoint of the matrix.

    EXAMPLES::

        sage: Q = QuadraticForm(ZZ, 2, [1,2,5])
        sage: Q.adjoint()
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 5 -2 ]
        [ * 1 ]

    ::

        sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
        sage: Q.adjoint()
        Quadratic form in 3 variables over Integer Ring with coefficients:
        [ 39 2 8 ]
        [ * 19 4 ]
        [ * * 8 ]

    """
    if is_odd(self.dim()):
        return QuadraticForm(self.matrix().adjoint() * 2)
    else:
        return QuadraticForm(self.matrix().adjoint())
コード例 #7
0
def adjoint(self):
    """
    This gives the adjoint (integral) quadratic form associated to the
    given form, essentially defined by taking the adjoint of the matrix.

    EXAMPLES::

        sage: Q = QuadraticForm(ZZ, 2, [1,2,5])
        sage: Q.adjoint()
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 5 -2 ]
        [ * 1 ]

    ::

        sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
        sage: Q.adjoint()
        Quadratic form in 3 variables over Integer Ring with coefficients:
        [ 39 2 8 ]
        [ * 19 4 ]
        [ * * 8 ]

    """
    if is_odd(self.dim()):
        return QuadraticForm(self.matrix().adjoint()*2)
    else:
        return QuadraticForm(self.matrix().adjoint())
コード例 #8
0
def antiadjoint(self):
    """
    This gives an (integral) form such that its adjoint is the given form.

    EXAMPLES::

        sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
        sage: Q.adjoint().antiadjoint()
        Quadratic form in 3 variables over Integer Ring with coefficients:
        [ 1 0 -1 ]
        [ * 2 -1 ]
        [ * * 5 ]
        sage: Q.antiadjoint()
        Traceback (most recent call last):
        ...
        ValueError: not an adjoint

    """
    try:
        n = self.dim()
        R = self.base_ring()
        d = R(self.disc() ** (ZZ(1) / (n - 1)))
        if is_odd(n):
            return self.adjoint().scale_by_factor(R(1) / 4 / d ** (n - 2))
        else:
            return self.adjoint().scale_by_factor(R(1) / d ** (n - 2))
    except TypeError:
        raise ValueError("not an adjoint")
コード例 #9
0
        def apply_simple_reflection_right(self, i):
            r"""
            Implements :meth:`CoxeterGroups.ElementMethods.apply_simple_reflection`.

            EXEMPLES::

                sage: D5 = FiniteCoxeterGroups().example(5)
                sage: [i^2 for i in D5]
                [(), (), (1, 2, 1, 2), (), (2, 1), (), (), (2, 1, 2, 1), (), (1, 2)]
                sage: [i^5 for i in D5]
                [(), (1,), (), (1, 2, 1), (), (1, 2, 1, 2, 1), (2,), (), (2, 1, 2), ()]
            """
            from copy import copy
            reduced_word = copy(self.value)
            n = self.parent().n
            if len(reduced_word) == n:
                if (i == 1 and is_odd(n)) or (i == 2 and is_even(n)):
                    return self.parent()(reduced_word[:-1])
                else:
                    return self.parent()(reduced_word[1:])
            elif (len(reduced_word) == n-1 and (not self.has_descent(i))) and (reduced_word[0] == 2):
                return self.parent()((1,)+reduced_word)
            else:
                if self.has_descent(i):
                    return self.parent()(reduced_word[:-1])
                else:
                    return self.parent()(reduced_word+(i,))
コード例 #10
0
        def apply_simple_reflection_right(self, i):
            r"""
            Implements :meth:`CoxeterGroups.ElementMethods.apply_simple_reflection`.

            EXAMPLES::

                sage: D5 = FiniteCoxeterGroups().example(5)
                sage: [i^2 for i in D5]  # indirect doctest
                [(), (), (), (1, 2, 1, 2), (2, 1, 2, 1), (), (), (2, 1), (1, 2), ()]
                sage: [i^5 for i in D5]  # indirect doctest
                [(), (1,), (2,), (), (), (1, 2, 1), (2, 1, 2), (), (), (1, 2, 1, 2, 1)]
            """
            from copy import copy
            reduced_word = copy(self.value)
            n = self.parent().n
            if len(reduced_word) == n:
                if (i == 1 and is_odd(n)) or (i == 2 and is_even(n)):
                    return self.parent()(reduced_word[:-1])
                else:
                    return self.parent()(reduced_word[1:])
            elif (len(reduced_word) == n - 1 and
                  (not self.has_descent(i))) and (reduced_word[0] == 2):
                return self.parent()((1, ) + reduced_word)
            else:
                if self.has_descent(i):
                    return self.parent()(reduced_word[:-1])
                else:
                    return self.parent()(reduced_word + (i, ))
コード例 #11
0
ファイル: dimensions.py プロジェクト: nilsskoruppa/lmfdb
def dimension_table_Sp4Z_j(wt_range, j_range):
    result = {}
    for wt in wt_range:
        result[wt] = {}
    for j in j_range:
        if is_odd(j):
            for wt in wt_range:
                result[wt][j] = 0
        else:
            _, olddim = dimension_Sp4Z_j(wt_range, j)
            for wt in wt_range:
                result[wt][j] = olddim[wt]['Total']
    return result
コード例 #12
0
ファイル: dimensions.py プロジェクト: alinabucur/lmfdb
def dimension_table_Sp4Z_j(wt_range, j_range):
    result = {}
    for wt in wt_range:
        result[wt] = {}
    for j in j_range:
        if is_odd(j):
            for wt in wt_range:
                result[wt][j] = 0
        else:
            _, olddim = dimension_Sp4Z_j(wt_range, j)
            for wt in wt_range:
                result[wt][j] = olddim[wt]["Total"]
    return result
コード例 #13
0
ファイル: ntt.py プロジェクト: l0re/sage-examples
def _fntt_textbook(a, w, n = 0, axis = 0):
    n = len(a)
    if n == 1:
        return a
    if is_odd(n):
        return _ntt(a, w)
    else:
        Feven = _fntt_textbook([a[i] for i in xrange(0, n, 2)], w**2)
        Fodd = _fntt_textbook([a[i] for i in xrange(1, n, 2)], w**2)
        
        combined = [0] * n
        for m in xrange(n/2):
            combined[m] = Feven[m] + w**m * Fodd[m]
            combined[m + n/2] = Feven[m] + w**(n/2+m) * Fodd[m]
        return combined
コード例 #14
0
ファイル: dimensions.py プロジェクト: am-github/lmfdb
def dimension_Gamma0_4_psi_4( wt_range):
    """
    <ul>
      <li><span class="emph">Total</span>: The full spaces.</li>
    </ul>
    <p> Odd weights are not yet implemented.</p>
    """
    headers = ['Total']
    dct = dict()
    s = t = 0 # Here starts a 'hack'
    for k in wt_range:
        if is_odd(k): continue
        dims =  _dimension_Gamma0_4_psi_4( k)
        dct[k] = dict( (headers[j],dims[j]) for j in range( len(headers)))
    return headers, dct
コード例 #15
0
ファイル: dimensions.py プロジェクト: nilsskoruppa/lmfdb
def dimension_Gamma0_4_psi_4(wt_range):
    """
    <ul>
      <li><span class="emph">Total</span>: The full spaces.</li>
    </ul>
    <p> Odd weights are not yet implemented.</p>
    """
    headers = ['Total']
    dct = dict()
    s = t = 0  # Here starts a 'hack'
    for k in wt_range:
        if is_odd(k): continue
        dims = _dimension_Gamma0_4_psi_4(k)
        dct[k] = dict((headers[j], dims[j]) for j in range(len(headers)))
    return headers, dct
コード例 #16
0
def trace_new_cusp_forms( k, m, l, n):
    r"""
    OUTPUT
        Rhe trace of  $T(l) \circ W_n$  on $S_k^{\text{new}}(Gamma_0(m)$).

    INPUT
        l -- Hecke operator index (rel. prime to the level $m$)
        n -- Atkin-Lehner involution index (exact divisor of the level $m$)
        k -- weight
        m -- a level ($\ge 1$)
    """
    k, m, l, n = __check( k, m, l, n)
    if is_odd(k) or k <= 0:
        return 0
    return sum( _alpha( m//mp) * _sz_s( k//2+1, mp, l, n.gcd(mp)) \
                for mp in m.divisors())
コード例 #17
0
    def _valid_index(self, w):
        r"""
        Return whether ``w`` is a valid index; no multiple powers in odd
        degrees.

        TESTS::

            sage: A.<x,y,z> = GradedCommutativeAlgebra(QQ, degrees=(1,2,3), max_degree=8)
            sage: w1 = A._weighted_vectors([1,2,1])
            sage: w2 = A._weighted_vectors([1,2,2])
            sage: A._valid_index(w1)
            True
            sage: A._valid_index(w2)
            False

        """
        return not any(i > 1 for i, d in zip(w, self._degrees) if is_odd(d))
コード例 #18
0
def trace_special_cusp_forms( k, m, l, n):
    r"""
    OUTPUT
        The function  $s_{k,m}(l,n)$, i.e.~the trace
        of $T(l) \circ W_n$ on the "certain" space
        $\mathcal{M}_{2k-2}^{\text{cusp}}(m)$ of modular forms
        as defined in [S-Z].

    INPUT
        l -- index of the Hecke operator, rel. prime to the level $m$
        n -- index of the Atkin-Lehner involution (exact divisor of $m$)
        k -- integer ($2k-2$ is the weight)
        m -- level
    """
    k, m, l, n = __check( k, m, l, n)
    if is_odd(k) or k <= 0:
        return 0
    return _sz_s( k//2+1, m, l, n)
コード例 #19
0
ファイル: lattice.py プロジェクト: nilsskoruppa/psage
 def is_even( self):
     I = self.gram_matrix().diagonal()
     for a in I:
         if is_odd(a):
             return False
     return True
コード例 #20
0
ファイル: dimensions.py プロジェクト: alinabucur/lmfdb
def _dimension_Gamma_2(wt_range, j, group="Gamma(2)"):
    """
    Return the dict
    {(k-> partition ->  [ d(k), e(k), c(k)] for k in wt_range]},
    where d(k), e(k), c(k) are the dimensions
    of the $p$-canonical part of $M_{k,j}( \Gamma(2))$ and its subspaces of
    Non-cusp forms and Cusp forms.
    """

    partitions = [u"6", u"51", u"42", u"411", u"33", u"321", u"311", u"222", u"2211", u"21111", u"111111"]

    if is_odd(j):
        dct = dict((k, dict((h, [0, 0, 0]) for h in partitions)) for k in wt_range)
        for k in dct:
            dct[k]["All"] = [0, 0, 0]
        partitions.insert(0, "All")
        return partitions, dct

    if "Sp4(Z)" == group and 2 == j and wt_range[0] < 4:
        wt_range1 = [k for k in wt_range if k < 4]
        wt_range2 = [k for k in wt_range if k >= 4]
        #        print wt_range1, wt_range2
        if wt_range2 != []:
            headers, dct = _dimension_Gamma_2(wt_range2, j, group)
        else:
            headers, dct = ["Total", "Non cusp", "Cusp"], {}
        for k in wt_range1:
            dct[k] = dict([(h, 0) for h in headers])
        return headers, dct

    if j >= 2 and wt_range[0] < 4:
        raise NotImplementedError("Dimensions of \(M_{k,j}\) for \(k<4\) and even \(j\ge 2\) not implemented")

    query = {"sym_power": str(j), "group": "Gamma(2)", "space": "total"}
    db_total = fetch(query)
    assert db_total, "%s: Data not available" % query
    query["space"] = "cusp"
    db_cusp = fetch(query)
    assert db_cusp, "%s: Data not available" % query

    P = PowerSeriesRing(IntegerRing(), default_prec=wt_range[-1] + 1, names=("t",))
    t = P.gen()
    total = dict()
    cusp = dict()
    for p in partitions:
        total[p] = eval(db_total[p])
        cusp[p] = eval(db_cusp[p])
    # total = dict( ( p, eval(db_total[p])) for p in partitions)
    # cusp = dict( ( p, eval(db_cusp[p])) for p in partitions)

    if "Gamma(2)" == group:
        dct = dict(
            (k, dict((p, [total[p][k], total[p][k] - cusp[p][k], cusp[p][k]]) for p in partitions)) for k in wt_range
        )
        for k in dct:
            dct[k]["All"] = [sum(dct[k][p][j] for p in dct[k]) for j in range(3)]

        partitions.insert(0, "All")
        headers = partitions

    elif "Gamma1(2)" == group:
        ps = {"3": ["6", "42", "222"], "21": ["51", "42", "321"], "111": ["411", "33"]}

        dct = dict(
            (
                k,
                dict(
                    (
                        p,
                        [
                            sum(total[q][k] for q in ps[p]),
                            sum(total[q][k] - cusp[q][k] for q in ps[p]),
                            sum(cusp[q][k] for q in ps[p]),
                        ],
                    )
                    for p in ps
                ),
            )
            for k in wt_range
        )
        for k in dct:
            dct[k]["All"] = [sum(dct[k][p][j] for p in dct[k]) for j in range(3)]

        headers = ps.keys()
        headers.sort(reverse=True)
        headers.insert(0, "All")

    elif "Gamma0(2)" == group:
        headers = ["Total", "Non cusp", "Cusp"]
        ps = ["6", "42", "222"]
        dct = dict(
            (
                k,
                {
                    "Total": sum(total[p][k] for p in ps),
                    "Non cusp": sum(total[p][k] - cusp[p][k] for p in ps),
                    "Cusp": sum(cusp[p][k] for p in ps),
                },
            )
            for k in wt_range
        )

    elif "Sp4(Z)" == group:
        headers = ["Total", "Non cusp", "Cusp"]
        p = "6"
        dct = dict(
            (k, {"Total": total[p][k], "Non cusp": total[p][k] - cusp[p][k], "Cusp": cusp[p][k]}) for k in wt_range
        )
    else:
        raise NotImplemetedError("Dimension for %s not implemented" % group)

    return headers, dct
コード例 #21
0
ファイル: dimensions.py プロジェクト: nilsskoruppa/lmfdb
def _dimension_Gamma_2(wt_range, j, group='Gamma(2)'):
    """
    Return the dict
    {(k-> partition ->  [ d(k), e(k), c(k)] for k in wt_range]},
    where d(k), e(k), c(k) are the dimensions
    of the $p$-canonical part of $M_{k,j}( \Gamma(2))$ and its subspaces of
    Non-cusp forms and Cusp forms.
    """

    partitions = [
        u'6', u'51', u'42', u'411', u'33', u'321', u'311', u'222', u'2211',
        u'21111', u'111111'
    ]

    if is_odd(j):
        dct = dict(
            (k, dict((h, [0, 0, 0]) for h in partitions)) for k in wt_range)
        for k in dct:
            dct[k]['All'] = [0, 0, 0]
        partitions.insert(0, 'All')
        return partitions, dct

    if 'Sp4(Z)' == group and 2 == j and wt_range[0] < 4:
        wt_range1 = [k for k in wt_range if k < 4]
        wt_range2 = [k for k in wt_range if k >= 4]
        print wt_range1, wt_range2
        if wt_range2 != []:
            headers, dct = _dimension_Gamma_2(wt_range2, j, group)
        else:
            headers, dct = ['Total', 'Non cusp', 'Cusp'], {}
        for k in wt_range1:
            dct[k] = dict([(h, 0) for h in headers])
        return headers, dct

    if j >= 2 and wt_range[0] < 4:
        raise NotImplementedError(
            'Dimensions of \(M_{k,j}\) for \(k<4\) and even \(j\ge 2\) not implemented'
        )

    query = {'sym_power': str(j), 'group': 'Gamma(2)', 'space': 'total'}
    db_total = fetch(query)
    assert db_total, '%s: Data not available' % query
    query['space'] = 'cusp'
    db_cusp = fetch(query)
    assert db_cusp, '%s: Data not available' % query

    P = PowerSeriesRing(IntegerRing(),
                        default_prec=wt_range[-1] + 1,
                        names=('t', ))
    t = P.gen()
    total = dict()
    cusp = dict()
    for p in partitions:
        total[p] = eval(db_total[p])
        cusp[p] = eval(db_cusp[p])
    # total = dict( ( p, eval(db_total[p])) for p in partitions)
    # cusp = dict( ( p, eval(db_cusp[p])) for p in partitions)

    if 'Gamma(2)' == group:
        dct = dict(
            (k,
             dict((p, [total[p][k], total[p][k] - cusp[p][k], cusp[p][k]])
                  for p in partitions)) for k in wt_range)
        for k in dct:
            dct[k]['All'] = [
                sum(dct[k][p][j] for p in dct[k]) for j in range(3)
            ]

        partitions.insert(0, 'All')
        headers = partitions

    elif 'Gamma1(2)' == group:
        ps = {
            '3': ['6', '42', '222'],
            '21': ['51', '42', '321'],
            '111': ['411', '33']
        }

        dct = dict((k,
                    dict((p, [
                        sum(total[q][k] for q in ps[p]),
                        sum(total[q][k] - cusp[q][k] for q in ps[p]),
                        sum(cusp[q][k] for q in ps[p]),
                    ]) for p in ps)) for k in wt_range)
        for k in dct:
            dct[k]['All'] = [
                sum(dct[k][p][j] for p in dct[k]) for j in range(3)
            ]

        headers = ps.keys()
        headers.sort(reverse=True)
        headers.insert(0, 'All')

    elif 'Gamma0(2)' == group:
        headers = ['Total', 'Non cusp', 'Cusp']
        ps = ['6', '42', '222']
        dct = dict((k, {
            'Total': sum(total[p][k] for p in ps),
            'Non cusp': sum(total[p][k] - cusp[p][k] for p in ps),
            'Cusp': sum(cusp[p][k] for p in ps)
        }) for k in wt_range)

    elif 'Sp4(Z)' == group:
        headers = ['Total', 'Non cusp', 'Cusp']
        p = '6'
        dct = dict((k, {
            'Total': total[p][k],
            'Non cusp': total[p][k] - cusp[p][k],
            'Cusp': cusp[p][k]
        }) for k in wt_range)
    else:
        raise NotImplemetedError('Dimension for %s not implemented' % group)

    return headers, dct
コード例 #22
0
ファイル: dimensions.py プロジェクト: mrubinst/lmfdb
def _dimension_Gamma_2( wt_range, j, group = 'Gamma(2)'):
    """
    Return the dict
    {(k-> partition ->  [ d(k), e(k), c(k)] for k in wt_range]},
    where d(k), e(k), c(k) are the dimensions
    of the $p$-canonical part of $M_{k,j}( \Gamma(2))$ and its subspaces of
    Non-cusp forms and Cusp forms.
    """

    partitions = [ u'6', u'51', u'42', u'411', u'33', u'321',
                   u'311', u'222', u'2211', u'21111', u'111111']

    if is_odd(j):
        dct = dict( (k,dict((h,[0,0,0]) for h in partitions)) for k in wt_range)
        for k in dct:
            dct[k]['All'] = [0,0,0]
        partitions.insert( 0,'All')
        return partitions, dct
        
    if j>=2 and  wt_range[0] < 4:
        raise NotImplementedError( 'Dimensions of \(M_{k,j}\) for \(k<4\) and even \(j\ge 2\) not implemented')

    query = { 'sym_power': str(j), 'group' : 'Gamma(2)', 'space': 'total'}
    db_total = fetch( query)
    assert db_total, '%s: Data not available' % query
    query['space'] = 'cusp'
    db_cusp = fetch( query)
    assert db_cusp, '%s: Data not available' % query
    
    P = PowerSeriesRing( IntegerRing(),  default_prec =wt_range[-1] + 1,  names = ('t',))
    t = P.gen()
    total = dict()
    cusp = dict()
    for p in partitions:
        total[p] = eval(db_total[p])
        cusp[p] = eval(db_cusp[p])
    # total = dict( ( p, eval(db_total[p])) for p in partitions)
    # cusp = dict( ( p, eval(db_cusp[p])) for p in partitions)
    
    if 'Gamma(2)' == group:
        dct = dict( (k, dict( (p, [total[p][k], total[p][k]-cusp[p][k], cusp[p][k]])
                              for p in partitions)) for k in wt_range)
        for k in dct:
            dct[k]['All'] = [sum( dct[k][p][j] for p in dct[k]) for j in range(3)]
            
        partitions.insert( 0,'All')
        headers = partitions

    elif 'Gamma1(2)' == group:
        ps = { '3': ['6', '42', '222'],
               '21': ['51', '42', '321'],
               '111': ['411', '33']}
        
        dct = dict( (k, dict( (p,[
                            sum( total[q][k] for q in ps[p]),
                            sum( total[q][k]-cusp[q][k] for q in ps[p]),
                            sum( cusp[q][k] for q in ps[p]),
                            ]) for p in ps)) for k in wt_range) 
        for k in dct:
            dct[k]['All'] = [sum( dct[k][p][j] for p in dct[k]) for j in range(3)]       

        headers = ps.keys()
        headers.sort( reverse = True)
        headers.insert( 0,'All')

    elif 'Gamma0(2)' == group:
        headers = ['Total', 'Non cusp', 'Cusp']
        ps = ['6', '42', '222']
        dct = dict( (k, { 'Total': sum( total[p][k] for p in ps),
                          'Non cusp': sum( total[p][k]-cusp[p][k] for p in ps),
                          'Cusp': sum( cusp[p][k] for p in ps)})
                    for k in wt_range)

    elif 'Sp4(Z)' == group:
        headers = ['Total', 'Non cusp', 'Cusp']
        p = '6'
        dct = dict( (k, { 'Total': total[p][k],
                          'Non cusp': total[p][k]-cusp[p][k],
                          'Cusp': cusp[p][k]})
                    for k in wt_range)
    else:
        raise NotImplemetedError( 'Dimension for %s not implemented' % group)

    return headers, dct
コード例 #23
0
ファイル: jacobi_form.py プロジェクト: nilsskoruppa/psage
 def is_odd( self):
     return is_odd( Integer(self.weight() - self.character()/2))