コード例 #1
0
ファイル: guava.py プロジェクト: sageb0t/testsage
def RandomLinearCodeGuava(n,k,F):
    r"""
    The method used is to first construct a `k \times n` matrix of the block
    form `(I,A)`, where `I` is a `k \times k` identity matrix and `A` is a
    `k \times (n-k)` matrix constructed using random elements of `F`. Then
    the columns are permuted using a randomly selected element of the symmetric
    group `S_n`.

    INPUT:
        Integers `n,k`, with `n>k>1`.

    OUTPUT:
        Returns a "random" linear code with length n, dimension k over field F.

    EXAMPLES::
        sage: C = RandomLinearCodeGuava(30,15,GF(2)); C      # optional - gap_packages (Guava package)
        Linear code of length 30, dimension 15 over Finite Field of size 2
        sage: C = RandomLinearCodeGuava(10,5,GF(4,'a')); C      # optional - gap_packages (Guava package)
        Linear code of length 10, dimension 5 over Finite Field in a of size 2^2

    AUTHOR: David Joyner (11-2005)
    """
    current_randstate().set_seed_gap()

    q = F.order()
    gap.eval("C:=RandomLinearCode("+str(n)+","+str(k)+", GF("+str(q)+"))")
    gap.eval("G:=GeneratorMat(C)")
    k = int(gap.eval("Length(G)"))
    n = int(gap.eval("Length(G[1])"))
    G = [[gfq_gap_to_sage(gap.eval("G[%s][%s]" % (i,j)),F) for j in range(1,n+1)] for i in range(1,k+1)]
    MS = MatrixSpace(F,k,n)
    return LinearCode(MS(G))
コード例 #2
0
ファイル: matrix_group.py プロジェクト: jwbober/sagelib
    def random_element(self):
        """
        Return a random element of this group.
        
        EXAMPLES::
        
            sage: G = Sp(4,GF(3))
            sage: G.random_element()  # random
            [2 1 1 1]
            [1 0 2 1]
            [0 1 1 0]
            [1 0 0 1]
            sage: G.random_element() in G
            True

        ::
        
            sage: F = GF(5); MS = MatrixSpace(F,2,2)
            sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
            sage: G = MatrixGroup(gens)
            sage: G.random_element()  # random
            [1 3]
            [0 3]
            sage: G.random_element() in G
            True
        """
        # Note: even with fixed random seed, the Random() element
        # returned by gap does depend on execution order and
        # architecture. Presumably due to different memory loctions.
        current_randstate().set_seed_gap()
        F = self.field_of_definition()
        return self.element_class(gap(self).Random()._matrix_(F), self, check=False)
コード例 #3
0
ファイル: matrix_group.py プロジェクト: jwbober/sagelib
 def conjugacy_class_representatives(self):
     """
     Return a set of representatives for each of the conjugacy classes
     of the group.
     
     EXAMPLES::
     
         sage: G = SU(3,GF(2))
         sage: len(G.conjugacy_class_representatives())
         16
         sage: len(GL(2,GF(3)).conjugacy_class_representatives())
         8
         sage: len(GU(2,GF(5)).conjugacy_class_representatives())
         36
     """
     current_randstate().set_seed_gap()
     try:
         return self.__reps
     except AttributeError:
         pass
     G    = self._gap_().ConjugacyClasses()
     reps = list(gap.List(G, 'x -> Representative(x)'))
     F    = self.field_of_definition()
     self.__reps = Sequence([self(g._matrix_(F)) for g in reps], cr=True, universe=self, check=False)
     return self.__reps
コード例 #4
0
ファイル: random.py プロジェクト: NitikaAgarwal/sage
def RandomShell(constructor, seed=None):
    """
    Returns a random shell graph for the constructor given.

    INPUT:

    -  ``constructor`` - a list of 3-tuples (n,m,d), each
       representing a shell

    -  ``n`` - the number of vertices in the shell

    -  ``m`` - the number of edges in the shell

    -  ``d`` - the ratio of inter (next) shell edges to
       intra shell edges

    -  ``seed`` - for the random number generator


    EXAMPLE::

        sage: G = graphs.RandomShell([(10,20,0.8),(20,40,0.8)])
        sage: G.edges(labels=False)
        [(0, 3), (0, 7), (0, 8), (1, 2), (1, 5), (1, 8), (1, 9), (3, 6), (3, 11), (4, 6), (4, 7), (4, 8), (4, 21), (5, 8), (5, 9), (6, 9), (6, 10), (7, 8), (7, 9), (8, 18), (10, 11), (10, 13), (10, 19), (10, 22), (10, 26), (11, 18), (11, 26), (11, 28), (12, 13), (12, 14), (12, 28), (12, 29), (13, 16), (13, 21), (13, 29), (14, 18), (16, 20), (17, 18), (17, 26), (17, 28), (18, 19), (18, 22), (18, 27), (18, 28), (19, 23), (19, 25), (19, 28), (20, 22), (24, 26), (24, 27), (25, 27), (25, 29)]
        sage: G.show()  # long time
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return Graph(networkx.random_shell_graph(constructor, seed=seed))
コード例 #5
0
ファイル: random.py プロジェクト: sageb0t/testsage
def RandomLobster(n, p, q, seed=None):
    """
    Returns a random lobster.

    A lobster is a tree that reduces to a caterpillar when pruning all
    leaf vertices. A caterpillar is a tree that reduces to a path when
    pruning all leaf vertices (q=0).

    INPUT:

    -  ``n`` - expected number of vertices in the backbone

    -  ``p`` - probability of adding an edge to the
       backbone

    -  ``q`` - probability of adding an edge (claw) to the
       arms

    -  ``seed`` - for the random number generator

    EXAMPLE: We show the edge list of a random graph with 3 backbone
    nodes and probabilities `p = 0.7` and `q = 0.3`::

        sage: graphs.RandomLobster(3, 0.7, 0.3).edges(labels=False)
        [(0, 1), (1, 2)]

    ::

        sage: G = graphs.RandomLobster(9, .6, .3)
        sage: G.show()  # long time
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return graph.Graph(networkx.random_lobster(n, p, q, seed=seed))
コード例 #6
0
    def RandomDirectedGN(self, n, kernel=lambda x:x, seed=None):
        """
        Returns a random GN (growing network) digraph with n vertices.

        The digraph is constructed by adding vertices with a link to one
        previously added vertex. The vertex to link to is chosen with a
        preferential attachment model, i.e. probability is proportional to
        degree. The default attachment kernel is a linear function of
        degree. The digraph is always a tree, so in particular it is a
        directed acyclic graph.

        INPUT:

        -  ``n`` - number of vertices.

        -  ``kernel`` - the attachment kernel

        -  ``seed`` - for the random number generator

        EXAMPLE::

            sage: D = digraphs.RandomDirectedGN(25)
            sage: D.edges(labels=False)
            [(1, 0), (2, 0), (3, 1), (4, 0), (5, 0), (6, 1), (7, 0), (8, 3), (9, 0), (10, 8), (11, 3), (12, 9), (13, 8), (14, 0), (15, 11), (16, 11), (17, 5), (18, 11), (19, 6), (20, 5), (21, 14), (22, 5), (23, 18), (24, 11)]
            sage: D.show()  # long time

        REFERENCE:

        - [1] Krapivsky, P.L. and Redner, S. Organization of Growing
          Random Networks, Phys. Rev. E vol. 63 (2001), p. 066123.
        """
        if seed is None:
            seed = current_randstate().long_seed()
        import networkx
        return DiGraph(networkx.gn_graph(n, kernel, seed=seed))
コード例 #7
0
    def RandomDirectedGNC(self, n, seed=None):
        """
        Returns a random GNC (growing network with copying) digraph with n
        vertices.

        The digraph is constructed by adding vertices with a link to one
        previously added vertex. The vertex to link to is chosen with a
        preferential attachment model, i.e. probability is proportional to
        degree. The new vertex is also linked to all of the previously
        added vertex's successors.

        INPUT:


        -  ``n`` - number of vertices.

        -  ``seed`` - for the random number generator


        EXAMPLE::

            sage: D = digraphs.RandomDirectedGNC(25)
            sage: D.edges(labels=False)
            [(1, 0), (2, 0), (2, 1), (3, 0), (4, 0), (4, 1), (5, 0), (5, 1), (5, 2), (6, 0), (6, 1), (7, 0), (7, 1), (7, 4), (8, 0), (9, 0), (9, 8), (10, 0), (10, 1), (10, 2), (10, 5), (11, 0), (11, 8), (11, 9), (12, 0), (12, 8), (12, 9), (13, 0), (13, 1), (14, 0), (14, 8), (14, 9), (14, 12), (15, 0), (15, 8), (15, 9), (15, 12), (16, 0), (16, 1), (16, 4), (16, 7), (17, 0), (17, 8), (17, 9), (17, 12), (18, 0), (18, 8), (19, 0), (19, 1), (19, 4), (19, 7), (20, 0), (20, 1), (20, 4), (20, 7), (20, 16), (21, 0), (21, 8), (22, 0), (22, 1), (22, 4), (22, 7), (22, 19), (23, 0), (23, 8), (23, 9), (23, 12), (23, 14), (24, 0), (24, 8), (24, 9), (24, 12), (24, 15)]
            sage: D.show()  # long time

        REFERENCE:

        - [1] Krapivsky, P.L. and Redner, S. Network Growth by
          Copying, Phys. Rev. E vol. 71 (2005), p. 036118.
        """
        if seed is None:
            seed = current_randstate().long_seed()
        import networkx
        return DiGraph(networkx.gnc_graph(n, seed=seed))
コード例 #8
0
    def RandomDirectedGNR(self, n, p, seed=None):
        """
        Returns a random GNR (growing network with redirection) digraph
        with n vertices and redirection probability p.

        The digraph is constructed by adding vertices with a link to one
        previously added vertex. The vertex to link to is chosen uniformly.
        With probability p, the arc is instead redirected to the successor
        vertex. The digraph is always a tree.

        INPUT:

        -  ``n`` - number of vertices.

        -  ``p`` - redirection probability

        -  ``seed`` - for the random number generator.

        EXAMPLE::

            sage: D = digraphs.RandomDirectedGNR(25, .2)
            sage: D.edges(labels=False)
            [(1, 0), (2, 0), (2, 1), (3, 0), (4, 0), (4, 1), (5, 0), (5, 1), (5, 2), (6, 0), (6, 1), (7, 0), (7, 1), (7, 4), (8, 0), (9, 0), (9, 8), (10, 0), (10, 1), (10, 2), (10, 5), (11, 0), (11, 8), (11, 9), (12, 0), (12, 8), (12, 9), (13, 0), (13, 1), (14, 0), (14, 8), (14, 9), (14, 12), (15, 0), (15, 8), (15, 9), (15, 12), (16, 0), (16, 1), (16, 4), (16, 7), (17, 0), (17, 8), (17, 9), (17, 12), (18, 0), (18, 8), (19, 0), (19, 1), (19, 4), (19, 7), (20, 0), (20, 1), (20, 4), (20, 7), (20, 16), (21, 0), (21, 8), (22, 0), (22, 1), (22, 4), (22, 7), (22, 19), (23, 0), (23, 8), (23, 9), (23, 12), (23, 14), (24, 0), (24, 8), (24, 9), (24, 12), (24, 15)]
            sage: D.show()  # long time

        REFERENCE:

        - [1] Krapivsky, P.L. and Redner, S. Organization of Growing
          Random Networks, Phys. Rev. E vol. 63 (2001), p. 066123.
        """
        if seed is None:
            seed = current_randstate().long_seed()
        import networkx
        return DiGraph(networkx.gnc_graph(n, seed=seed))
コード例 #9
0
ファイル: degree_sequence.py プロジェクト: mcognetta/sage
def DegreeSequenceExpected(deg_sequence, seed=None):
    """
    Returns a random graph with expected given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    -  ``deg_sequence`` - a list of integers with each
       entry corresponding to the expected degree of a different vertex.

    -  ``seed`` - for the random number generator.


    EXAMPLES::

        sage: G = graphs.DegreeSequenceExpected([1,2,3,2,3])
        sage: G.edges(labels=False)
        [(0, 2), (0, 3), (1, 1), (1, 4), (2, 3), (2, 4), (3, 4), (4, 4)]
        sage: G.show()  # long time

    REFERENCE:

    .. [ChungLu2002] Chung, Fan and Lu, L. Connected components in random
      graphs with given expected degree sequences.
      Ann. Combinatorics (6), 2002 pp. 125-145.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return Graph(networkx.expected_degree_graph([int(i) for i in deg_sequence], seed=seed), loops=True)
コード例 #10
0
ファイル: random.py プロジェクト: CETHop/sage
def RandomHolmeKim(n, m, p, seed=None):
    """
    Returns a random graph generated by the Holme and Kim algorithm for
    graphs with power law degree distribution and approximate average
    clustering.

    INPUT:


    -  ``n`` - number of vertices.

    -  ``m`` - number of random edges to add for each new
       node.

    -  ``p`` - probability of adding a triangle after
       adding a random edge.

    -  ``seed`` - for the random number generator.


    From the NetworkX documentation: The average clustering has a hard
    time getting above a certain cutoff that depends on m. This cutoff
    is often quite low. Note that the transitivity (fraction of
    triangles to possible triangles) seems to go down with network
    size. It is essentially the Barabasi-Albert growth model with an
    extra step that each random edge is followed by a chance of making
    an edge to one of its neighbors too (and thus a triangle). This
    algorithm improves on B-A in the sense that it enables a higher
    average clustering to be attained if desired. It seems possible to
    have a disconnected graph with this algorithm since the initial m
    nodes may not be all linked to a new node on the first iteration
    like the BA model.

    EXAMPLE: We show the edge list of a random graph on 8 nodes with 2
    random edges per node and a probability `p = 0.5` of
    forming triangles.

    ::

        sage: graphs.RandomHolmeKim(8, 2, 0.5).edges(labels=False)
        [(0, 2), (0, 5), (1, 2), (1, 3), (2, 3), (2, 4), (2, 6), (2, 7),
         (3, 4), (3, 6), (3, 7), (4, 5)]

    ::

        sage: G = graphs.RandomHolmeKim(12, 3, .3)
        sage: G.show()  # long time

    REFERENCE:

    - [1] Holme, P. and Kim, B.J. Growing scale-free networks with
      tunable clustering, Phys. Rev. E (2002). vol 65, no 2,
      026107.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    return graph.Graph(networkx.powerlaw_cluster_graph(n, m, p, seed=seed))
コード例 #11
0
    def _cftp(self, start_row):
        """
        Implement coupling from the past.

        ALGORITHM:

        The set of Gelfand-Tsetlin patterns can partially ordered by
        elementwise domination.  The partial order has unique maximum
        and minimum elements that are computed by the methods
        :meth:`_cftp_upper` and :meth:`_cftp_lower`. We then run the Markov
        chain that randomly toggles each element up or down from the
        past until the state reached from the upper and lower start
        points coalesce as described in [Propp1997]_.

        EXAMPLES::

            sage: G = GelfandTsetlinPatterns(3, 5)
            sage: G._cftp(0)  # random
            [[5, 3, 2], [4, 2], [3]]
            sage: G._cftp(0) in G
            True
        """
        from sage.misc.randstate import current_randstate
        from sage.misc.randstate import seed
        from sage.misc.randstate import random

        count = self._n * self._k
        seedlist = [(current_randstate().long_seed(), count)]
        upper = []
        lower = []
        while True:
            upper = self._cftp_upper()
            lower = self._cftp_lower()
            for currseed, count in seedlist:
                with seed(currseed):
                    for _ in range(count):
                        for row in range(start_row, self._n):
                            for col in range(self._n - row):
                                direction = random() % 2
                                self._toggle_markov_chain(upper, row, col, direction)
                                self._toggle_markov_chain(lower, row, col, direction)
            if all(all(x == y for x,y in zip(l1, l2)) for l1, l2 in zip(upper, lower)):
                break
            count = seedlist[0][1] * 2
            seedlist.insert(0, (current_randstate().long_seed(), count))
        return GelfandTsetlinPattern(upper)
コード例 #12
0
ファイル: random.py プロジェクト: CETHop/sage
def RandomBarabasiAlbert(n, m, seed=None):
    u"""
    Return a random graph created using the Barabasi-Albert preferential
    attachment model.

    A graph with m vertices and no edges is initialized, and a graph of n
    vertices is grown by attaching new vertices each with m edges that are
    attached to existing vertices, preferentially with high degree.

    INPUT:

    - ``n`` - number of vertices in the graph

    - ``m`` - number of edges to attach from each new node

    - ``seed`` - for random number generator

    EXAMPLES:

    We show the edge list of a random graph on 6 nodes with m = 2.

    ::

        sage: graphs.RandomBarabasiAlbert(6,2).edges(labels=False)
        [(0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (2, 4), (2, 5), (3, 5)]

    We plot a random graph on 12 nodes with m = 3.

    ::

        sage: ba = graphs.RandomBarabasiAlbert(12,3)
        sage: ba.show()  # long time

    We view many random graphs using a graphics array::

        sage: g = []
        sage: j = []
        sage: for i in range(1,10):
        ...    k = graphs.RandomBarabasiAlbert(i+3, 3)
        ...    g.append(k)
        ...
        sage: for i in range(3):
        ...    n = []
        ...    for m in range(3):
        ...        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
        ...    j.append(n)
        ...
        sage: G = sage.plot.graphics.GraphicsArray(j)
        sage: G.show()  # long time

    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    return graph.Graph(networkx.barabasi_albert_graph(n, m, seed=seed))
コード例 #13
0
ファイル: random.py プロジェクト: CETHop/sage
def RandomGNM(n, m, dense=False, seed=None):
    """
    Returns a graph randomly picked out of all graphs on n vertices
    with m edges.

    INPUT:


    -  ``n`` - number of vertices.

    -  ``m`` - number of edges.

    -  ``dense`` - whether to use NetworkX's
       dense_gnm_random_graph or gnm_random_graph


    EXAMPLES: We show the edge list of a random graph on 5 nodes with
    10 edges.

    ::

        sage: graphs.RandomGNM(5, 10).edges(labels=False)
        [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

    We plot a random graph on 12 nodes with m = 12.

    ::

        sage: gnm = graphs.RandomGNM(12, 12)
        sage: gnm.show()  # long time

    We view many random graphs using a graphics array::

        sage: g = []
        sage: j = []
        sage: for i in range(9):
        ...    k = graphs.RandomGNM(i+3, i^2-i)
        ...    g.append(k)
        ...
        sage: for i in range(3):
        ...    n = []
        ...    for m in range(3):
        ...        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
        ...    j.append(n)
        ...
        sage: G = sage.plot.graphics.GraphicsArray(j)
        sage: G.show()  # long time
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    if dense:
        return graph.Graph(networkx.dense_gnm_random_graph(n, m, seed=seed))
    else:
        return graph.Graph(networkx.gnm_random_graph(n, m, seed=seed))
コード例 #14
0
ファイル: matrix_group.py プロジェクト: jwbober/sagelib
    def irreducible_characters(self):
        """
        Returns the list of irreducible characters of the group.

        EXAMPLES::
        
            sage: G = GL(2,2)
            sage: G.irreducible_characters()
            [Character of General Linear Group of degree 2 over Finite Field of size 2,
             Character of General Linear Group of degree 2 over Finite Field of size 2,
             Character of General Linear Group of degree 2 over Finite Field of size 2]

        """
        current_randstate().set_seed_gap()
        Irr = self._gap_().Irr()
        L = []
        for irr in Irr:
            L.append(ClassFunction(self,irr))
        return L
コード例 #15
0
ファイル: random.py プロジェクト: CETHop/sage
def RandomRegular(d, n, seed=None):
    """
    Returns a random d-regular graph on n vertices, or returns False on
    failure.

    Since every edge is incident to two vertices, n\*d must be even.

    INPUT:


    -  ``n`` - number of vertices

    -  ``d`` - degree

    -  ``seed`` - for the random number generator


    EXAMPLE: We show the edge list of a random graph with 8 nodes each
    of degree 3.

    ::

        sage: graphs.RandomRegular(3, 8).edges(labels=False)
        [(0, 1), (0, 4), (0, 7), (1, 5), (1, 7), (2, 3), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5), (6, 7)]

    ::

        sage: G = graphs.RandomRegular(3, 20)
        sage: if G:
        ...    G.show()  # random output, long time

    REFERENCES:

    - [1] Kim, Jeong Han and Vu, Van H. Generating random regular
      graphs. Proc. 35th ACM Symp. on Thy. of Comp. 2003, pp
      213-222. ACM Press, San Diego, CA, USA.
      http://doi.acm.org/10.1145/780542.780576

    - [2] Steger, A. and Wormald, N. Generating random regular
      graphs quickly. Prob. and Comp. 8 (1999), pp 377-396.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    try:
        N = networkx.random_regular_graph(d, n, seed=seed)
        if N is False:
            return False
        return graph.Graph(N, sparse=True)
    except StandardError:
        return False
コード例 #16
0
ファイル: guava.py プロジェクト: saraedum/sage-renamed
def RandomLinearCodeGuava(n, k, F):
    r"""
    The method used is to first construct a `k \times n` matrix of the block
    form `(I,A)`, where `I` is a `k \times k` identity matrix and `A` is a
    `k \times (n-k)` matrix constructed using random elements of `F`. Then
    the columns are permuted using a randomly selected element of the symmetric
    group `S_n`.

    INPUT:

    - ``n,k`` -- integers with `n>k>1`.

    OUTPUT:

    Returns a "random" linear code with length `n`, dimension `k` over field `F`.

    EXAMPLES::

        sage: C = codes.RandomLinearCodeGuava(30,15,GF(2)); C      # optional - gap_packages (Guava package)
        [30, 15] linear code over GF(2)
        sage: C = codes.RandomLinearCodeGuava(10,5,GF(4,'a')); C      # optional - gap_packages (Guava package)
        [10, 5] linear code over GF(4)

    AUTHOR: David Joyner (11-2005)
    """
    current_randstate().set_seed_gap()

    q = F.order()
    if not is_package_installed('gap_packages'):
        raise PackageNotFoundError('gap_packages')
    gap.load_package("guava")
    gap.eval("C:=RandomLinearCode("+str(n)+","+str(k)+", GF("+str(q)+"))")
    gap.eval("G:=GeneratorMat(C)")
    k = int(gap.eval("Length(G)"))
    n = int(gap.eval("Length(G[1])"))
    G = [[gfq_gap_to_sage(gap.eval("G[%s][%s]" % (i, j)), F)
          for j in range(1, n + 1)] for i in range(1, k + 1)]
    MS = MatrixSpace(F, k, n)
    return LinearCode(MS(G))
コード例 #17
0
ファイル: random.py プロジェクト: ozzie00/sage
def RandomRegular(d, n, seed=None):
    """
    Returns a random d-regular graph on n vertices, or returns False on
    failure.

    Since every edge is incident to two vertices, n\*d must be even.

    INPUT:

    -  ``n`` - number of vertices

    -  ``d`` - degree

    -  ``seed`` - for the random number generator


    EXAMPLES: We show the edge list of a random graph with 8 nodes each
    of degree 3.

    ::

        sage: graphs.RandomRegular(3, 8).edges(labels=False)
        [(0, 1), (0, 4), (0, 7), (1, 5), (1, 7), (2, 3), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5), (6, 7)]

    ::

        sage: G = graphs.RandomRegular(3, 20)
        sage: if G:
        ....:     G.show()  # random output, long time

    REFERENCES:

    .. [KimVu2003] Kim, Jeong Han and Vu, Van H. Generating random regular
      graphs. Proc. 35th ACM Symp. on Thy. of Comp. 2003, pp
      213-222. ACM Press, San Diego, CA, USA.
      http://doi.acm.org/10.1145/780542.780576

    .. [StegerWormald1999] Steger, A. and Wormald, N. Generating random
      regular graphs quickly. Prob. and Comp. 8 (1999), pp 377-396.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    try:
        N = networkx.random_regular_graph(d, n, seed=seed)
        if N is False: return False
        return Graph(N, sparse=True)
    except Exception:
        return False
コード例 #18
0
ファイル: random.py プロジェクト: CETHop/sage
def RandomNewmanWattsStrogatz(n, k, p, seed=None):
    """
    Returns a Newman-Watts-Strogatz small world random graph on n
    vertices.

    From the NetworkX documentation: First create a ring over n nodes.
    Then each node in the ring is connected with its k nearest
    neighbors. Then shortcuts are created by adding new edges as
    follows: for each edge u-v in the underlying "n-ring with k nearest
    neighbors"; with probability p add a new edge u-w with
    randomly-chosen existing node w. In contrast with
    watts_strogatz_graph(), no edges are removed.

    INPUT:


    -  ``n`` - number of vertices.

    -  ``k`` - each vertex is connected to its k nearest
       neighbors

    -  ``p`` - the probability of adding a new edge for
       each edge

    -  ``seed`` - for the random number generator


    EXAMPLE: We show the edge list of a random graph on 7 nodes with 2
    "nearest neighbors" and probability `p = 0.2`::

        sage: graphs.RandomNewmanWattsStrogatz(7, 2, 0.2).edges(labels=False)
        [(0, 1), (0, 2), (0, 3), (0, 6), (1, 2), (2, 3), (2, 4), (3, 4), (3, 6), (4, 5), (5, 6)]

    ::

        sage: G = graphs.RandomNewmanWattsStrogatz(12, 2, .3)
        sage: G.show()  # long time

    REFERENCE:

    - [1] Newman, M.E.J., Watts, D.J. and Strogatz, S.H.  Random
      graph models of social networks. Proc. Nat. Acad. Sci. USA
      99, 2566-2572.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    return graph.Graph(networkx.newman_watts_strogatz_graph(n, k, p, seed=seed))
コード例 #19
0
ファイル: prandom.py プロジェクト: pombredanne/spd_notebook
def _pyrand():
    r""" 
    A tiny private helper function to return an instance of
    random.Random from the current \sage random number state.
    Only for use in prandom.py; other modules should use 
    current_randstate().python_random().

    EXAMPLES:
        sage: from sage.misc.prandom import _pyrand
        sage: _pyrand()
        <random.Random object at 0x...>
        sage: _pyrand().getrandbits(10)
        114L
    """
    return current_randstate().python_random()
コード例 #20
0
def RandomLinearCodeGuava(n, k, F):
    r"""
    The method used is to first construct a `k \times n` matrix of the block 
    form `(I,A)`, where `I` is a `k \times k` identity matrix and `A` is a 
    `k \times (n-k)` matrix constructed using random elements of `F`. Then 
    the columns are permuted using a randomly selected element of the symmetric 
    group `S_n`.

    INPUT:
        Integers `n,k`, with `n>k>1`.
    
    OUTPUT:
        Returns a "random" linear code with length n, dimension k over field F. 

    EXAMPLES::
        sage: C = RandomLinearCodeGuava(30,15,GF(2)); C      # optional - gap_packages (Guava package)
        Linear code of length 30, dimension 15 over Finite Field of size 2
        sage: C = RandomLinearCodeGuava(10,5,GF(4,'a')); C      # optional - gap_packages (Guava package)
        Linear code of length 10, dimension 5 over Finite Field in a of size 2^2

    AUTHOR: David Joyner (11-2005)
    """
    current_randstate().set_seed_gap()

    q = F.order()
    gap.eval("C:=RandomLinearCode(" + str(n) + "," + str(k) + ", GF(" +
             str(q) + "))")
    gap.eval("G:=GeneratorMat(C)")
    k = int(gap.eval("Length(G)"))
    n = int(gap.eval("Length(G[1])"))
    G = [[
        gfq_gap_to_sage(gap.eval("G[%s][%s]" % (i, j)), F)
        for j in range(1, n + 1)
    ] for i in range(1, k + 1)]
    MS = MatrixSpace(F, k, n)
    return LinearCode(MS(G))
コード例 #21
0
ファイル: prandom.py プロジェクト: bopopescu/spd_notebook
def _pyrand():
    r""" 
    A tiny private helper function to return an instance of
    random.Random from the current \sage random number state.
    Only for use in prandom.py; other modules should use 
    current_randstate().python_random().

    EXAMPLES:
        sage: from sage.misc.prandom import _pyrand
        sage: _pyrand()
        <random.Random object at 0x...>
        sage: _pyrand().getrandbits(10)
        114L
    """
    return current_randstate().python_random()
コード例 #22
0
def DegreeSequenceConfigurationModel(deg_sequence, seed=None):
    """
    Returns a random pseudograph with the given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph with multiple edges and loops.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    -  ``deg_sequence`` - a list of integers with each
       entry corresponding to the expected degree of a different vertex.

    -  ``seed`` - for the random number generator.


    EXAMPLES::

        sage: G = graphs.DegreeSequenceConfigurationModel([1,1])
        sage: G.adjacency_matrix()
        [0 1]
        [1 0]

    Note: as of this writing, plotting of loops and multiple edges is
    not supported, and the output is allowed to contain both types of
    edges.

    ::

        sage: G = graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])
        sage: sorted(G.edges(labels=False))
        [(0, 2), (0, 10), (0, 15), (1, 6), (1, 16), (1, 17), (2, 5), (2, 19),
        (3, 7), (3, 14), (3, 14), (4, 9), (4, 13), (4, 19), (5, 6),
        (5, 15), (6, 11), (7, 11), (7, 17), (8, 11), (8, 18), (8, 19),
        (9, 12), (9, 13), (10, 15), (10, 18), (12, 13), (12, 16), (14, 17),
        (16, 18)]
        sage: G.show()  # long time

    REFERENCE:

    .. [Newman2003] Newman, M.E.J. The Structure and function of complex
      networks, SIAM Review vol. 45, no. 2 (2003), pp. 167-256.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return Graph(networkx.configuration_model([int(i) for i in deg_sequence], seed=seed), loops=True, multiedges=True, sparse=True)
コード例 #23
0
ファイル: degree_sequence.py プロジェクト: swewers/mein_sage
def DegreeSequenceConfigurationModel(deg_sequence, seed=None):
    """
    Returns a random pseudograph with the given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph with multiple edges and loops.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    - ``deg_sequence`` - a list of integers with each entry corresponding to the
      expected degree of a different vertex.

    - ``seed`` - a ``random.Random`` seed or a Python ``int`` for the random
      number generator (default: ``None``).


    EXAMPLES::

        sage: G = graphs.DegreeSequenceConfigurationModel([1,1])
        sage: G.adjacency_matrix()
        [0 1]
        [1 0]

    Note: as of this writing, plotting of loops and multiple edges is
    not supported, and the output is allowed to contain both types of
    edges.

    ::

        sage: G = graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])
        sage: len(G.edges())
        30
        sage: G.show()  # long time

    REFERENCE:

    [New2003]_
    """
    if seed is None:
        seed = int(current_randstate().long_seed() % sys.maxsize)
    import networkx
    return Graph(networkx.configuration_model([int(i) for i in deg_sequence],
                                              seed=seed),
                 loops=True,
                 multiedges=True,
                 sparse=True)
コード例 #24
0
def RandomNewmanWattsStrogatz(n, k, p, seed=None):
    """
    Returns a Newman-Watts-Strogatz small world random graph on n
    vertices.

    From the NetworkX documentation: First create a ring over n nodes.
    Then each node in the ring is connected with its k nearest
    neighbors. Then shortcuts are created by adding new edges as
    follows: for each edge u-v in the underlying "n-ring with k nearest
    neighbors"; with probability p add a new edge u-w with
    randomly-chosen existing node w. In contrast with
    watts_strogatz_graph(), no edges are removed.

    INPUT:


    -  ``n`` - number of vertices.

    -  ``k`` - each vertex is connected to its k nearest
       neighbors

    -  ``p`` - the probability of adding a new edge for
       each edge

    -  ``seed`` - for the random number generator


    EXAMPLE: We show the edge list of a random graph on 7 nodes with 2
    "nearest neighbors" and probability `p = 0.2`::

        sage: graphs.RandomNewmanWattsStrogatz(7, 2, 0.2).edges(labels=False)
        [(0, 1), (0, 2), (0, 3), (0, 6), (1, 2), (2, 3), (2, 4), (3, 4), (3, 6), (4, 5), (5, 6)]

    ::

        sage: G = graphs.RandomNewmanWattsStrogatz(12, 2, .3)
        sage: G.show()  # long time

    REFERENCE:

    - [1] Newman, M.E.J., Watts, D.J. and Strogatz, S.H.  Random
      graph models of social networks. Proc. Nat. Acad. Sci. USA
      99, 2566-2572.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return graph.Graph(networkx.newman_watts_strogatz_graph(n, k, p, seed=seed))
コード例 #25
0
ファイル: degree_sequence.py プロジェクト: yunboliu27/sage
def DegreeSequenceConfigurationModel(deg_sequence, seed=None):
    """
    Returns a random pseudograph with the given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph with multiple edges and loops.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    -  ``deg_sequence`` - a list of integers with each
       entry corresponding to the expected degree of a different vertex.

    -  ``seed`` - for the random number generator.


    EXAMPLES::

        sage: G = graphs.DegreeSequenceConfigurationModel([1,1])
        sage: G.adjacency_matrix()
        [0 1]
        [1 0]

    Note: as of this writing, plotting of loops and multiple edges is
    not supported, and the output is allowed to contain both types of
    edges.

    ::

        sage: G = graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])
        sage: G.edges(labels=False)
        [(0, 2), (0, 10), (0, 15), (1, 6), (1, 16), (1, 17), (2, 5), (2, 19), (3, 7), (3, 14), (3, 14), (4, 9), (4, 13), (4, 19), (5, 6), (5, 15), (6, 11), (7, 11), (7, 17), (8, 11), (8, 18), (8, 19), (9, 12), (9, 13), (10, 15), (10, 18), (12, 13), (12, 16), (14, 17), (16, 18)]
        sage: G.show()  # long time

    REFERENCE:

    .. [Newman2003] Newman, M.E.J. The Structure and function of complex
      networks, SIAM Review vol. 45, no. 2 (2003), pp. 167-256.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return Graph(networkx.configuration_model([int(i) for i in deg_sequence],
                                              seed=seed),
                 loops=True,
                 multiedges=True,
                 sparse=True)
コード例 #26
0
def random_sublist_of_size(k, n):
    """
    INPUT:

    - k -- an integer
    - n -- an integer

    OUTPUT:

    a randomly chosen sublist of range(k) of size n.

    EXAMPLES::

        sage: import sage.matrix.matrix_integer_dense_saturation as s
        sage: l = s.random_sublist_of_size(10, 3)
        sage: len(l)
        3
        sage: l_check = [-1] + l + [10]
        sage: all(l_check[i] < l_check[i+1] for i in range(4))
        True
        sage: l = s.random_sublist_of_size(10, 7)
        sage: len(l)
        7
        sage: l_check = [-1] + l + [10]
        sage: all(l_check[i] < l_check[i+1] for i in range(8))
        True
    """
    if n > k:
        raise ValueError("n must be <= len(v)")
    if n == k:
        return list(range(k))
    if n >= k // 2 + 5:
        # use complement
        w = random_sublist_of_size(k, k - n)
        m = set(w)
        w = [z for z in range(k) if z not in m]
        assert (len(w) == n)
        return w

    randrange = current_randstate().python_random().randrange

    w = set([])
    while len(w) < n:
        z = randrange(k)
        if z not in w:
            w.add(z)
    return sorted(w)
コード例 #27
0
ファイル: digraph_generators.py プロジェクト: bgxcpku/sagelib
    def RandomDirectedGNP(self, n, p, loops = False, seed = None):
        r"""
        Returns a random digraph on `n` nodes. Each edge is inserted
        independently with probability `p`.

        INPUTS:

        - ``n`` -- number of nodes of the digraph

        - ``p`` -- probability of an edge

        - ``loops`` -- is a boolean set to True if the random digraph may have
          loops, and False (default) otherwise.

        - ``seed`` -- integer seed for random number generator (default=None).

        REFERENCES:

        .. [1] P. Erdos and A. Renyi, On Random Graphs, Publ.  Math. 6, 290
               (1959).

        .. [2] E. N. Gilbert, Random Graphs, Ann. Math.  Stat., 30, 1141 (1959).


        PLOTTING: When plotting, this graph will use the default spring-layout
        algorithm, unless a position dictionary is specified.

        EXAMPLE::

            sage: set_random_seed(0)
            sage: D = digraphs.RandomDirectedGNP(10, .2)
            sage: D.num_verts()
            10
            sage: D.edges(labels=False)
            [(1, 0), (1, 2), (3, 6), (3, 7), (4, 5), (4, 7), (4, 8), (5, 2), (6, 0), (7, 2), (8, 1), (8, 9), (9, 4)]
        """
        from sage.graphs.graph_generators_pyx import RandomGNP
        if n < 0:
            raise ValueError("The number of nodes must be positive or null.")
        if 0.0 > p or 1.0 < p:
            raise ValueError("The probability p must be in [0..1].")

        if seed is None:
            seed = current_randstate().long_seed()

        return RandomGNP(n, p, directed = True, loops = loops)
コード例 #28
0
    def RandomDirectedGNP(self, n, p, loops=False, seed=None):
        r"""
        Returns a random digraph on `n` nodes. Each edge is inserted
        independently with probability `p`.

        INPUTS:

        - ``n`` -- number of nodes of the digraph

        - ``p`` -- probability of an edge

        - ``loops`` -- is a boolean set to True if the random digraph may have
          loops, and False (default) otherwise.

        - ``seed`` -- integer seed for random number generator (default=None).

        REFERENCES:

        .. [1] P. Erdos and A. Renyi, On Random Graphs, Publ.  Math. 6, 290
               (1959).

        .. [2] E. N. Gilbert, Random Graphs, Ann. Math.  Stat., 30, 1141 (1959).


        PLOTTING: When plotting, this graph will use the default spring-layout
        algorithm, unless a position dictionary is specified.

        EXAMPLE::

            sage: set_random_seed(0)
            sage: D = digraphs.RandomDirectedGNP(10, .2)
            sage: D.num_verts()
            10
            sage: D.edges(labels=False)
            [(1, 0), (1, 2), (3, 6), (3, 7), (4, 5), (4, 7), (4, 8), (5, 2), (6, 0), (7, 2), (8, 1), (8, 9), (9, 4)]
        """
        from sage.graphs.graph_generators_pyx import RandomGNP
        if n < 0:
            raise ValueError("The number of nodes must be positive or null.")
        if 0.0 > p or 1.0 < p:
            raise ValueError("The probability p must be in [0..1].")

        if seed is None:
            seed = current_randstate().long_seed()

        return RandomGNP(n, p, directed=True, loops=loops)
コード例 #29
0
ファイル: degree_sequence.py プロジェクト: sagemath/sage
def DegreeSequenceConfigurationModel(deg_sequence, seed=None):
    """
    Returns a random pseudograph with the given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph with multiple edges and loops.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    - ``deg_sequence`` - a list of integers with each entry corresponding to the
      expected degree of a different vertex.

    - ``seed`` - a ``random.Random`` seed or a Python ``int`` for the random
      number generator (default: ``None``).


    EXAMPLES::

        sage: G = graphs.DegreeSequenceConfigurationModel([1,1])
        sage: G.adjacency_matrix()
        [0 1]
        [1 0]

    Note: as of this writing, plotting of loops and multiple edges is
    not supported, and the output is allowed to contain both types of
    edges.

    ::

        sage: G = graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])
        sage: len(G.edges())
        30
        sage: G.show()  # long time

    REFERENCE:

    .. [Newman2003] Newman, M.E.J. The Structure and function of complex
      networks, SIAM Review vol. 45, no. 2 (2003), pp. 167-256.
    """
    if seed is None:
        seed = int(current_randstate().long_seed() % sys.maxsize)
    import networkx
    return Graph(networkx.configuration_model([int(i) for i in deg_sequence], seed=seed), loops=True, multiedges=True, sparse=True)
コード例 #30
0
def DegreeSequenceConfigurationModel(deg_sequence, seed=None):
    """
    Return a random pseudograph with the given degree sequence.

    This method raises a NetworkX error if the proposed degree sequence cannot
    be that of a graph with multiple edges and loops.

    One requirement is that the sum of the degrees must be even, since every
    edge must be incident with two vertices.

    INPUT:

    - ``deg_sequence`` -- list of integers with each entry corresponding to the
      expected degree of a different vertex

    - ``seed`` -- (optional) a ``random.Random`` seed or a Python ``int`` for
      the random number generator

    EXAMPLES::

        sage: G = graphs.DegreeSequenceConfigurationModel([1,1])
        sage: G.adjacency_matrix()
        [0 1]
        [1 0]

    The output is allowed to contain both loops and multiple edges::

        sage: deg_sequence = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]
        sage: G = graphs.DegreeSequenceConfigurationModel(deg_sequence)
        sage: G.order(), G.size()
        (20, 30)
        sage: G.has_loops() or G.has_multiple_edges()  # random
        True
        sage: G.show()  # long time

    REFERENCE:

    [New2003]_
    """
    if seed is None:
        seed = int(current_randstate().long_seed() % sys.maxsize)
    import networkx
    deg_sequence = [int(i) for i in deg_sequence]
    return Graph(networkx.configuration_model(deg_sequence, seed=seed),
                     loops=True, multiedges=True, sparse=True)
コード例 #31
0
ファイル: random.py プロジェクト: CETHop/sage
def RandomTreePowerlaw(n, gamma=3, tries=100, seed=None):
    """
    Returns a tree with a power law degree distribution. Returns False
    on failure.

    From the NetworkX documentation: A trial power law degree sequence
    is chosen and then elements are swapped with new elements from a
    power law distribution until the sequence makes a tree (size = order
    - 1).

    INPUT:


    -  ``n`` - number of vertices

    -  ``gamma`` - exponent of power law

    -  ``tries`` - number of attempts to adjust sequence to
       make a tree

    -  ``seed`` - for the random number generator


    EXAMPLE: We show the edge list of a random graph with 10 nodes and
    a power law exponent of 2.

    ::

        sage: graphs.RandomTreePowerlaw(10, 2).edges(labels=False)
        [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (6, 8), (6, 9)]

    ::

        sage: G = graphs.RandomTreePowerlaw(15, 2)
        sage: if G:
        ...    G.show()  # random output, long time
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    try:
        return graph.Graph(networkx.random_powerlaw_tree(n, gamma, seed=seed, tries=tries))
    except networkx.NetworkXError:
        return False
コード例 #32
0
def RandomTreePowerlaw(n, gamma=3, tries=100, seed=None):
    """
    Returns a tree with a power law degree distribution. Returns False
    on failure.

    From the NetworkX documentation: A trial power law degree sequence
    is chosen and then elements are swapped with new elements from a
    power law distribution until the sequence makes a tree (size = order
    - 1).

    INPUT:


    -  ``n`` - number of vertices

    -  ``gamma`` - exponent of power law

    -  ``tries`` - number of attempts to adjust sequence to
       make a tree

    -  ``seed`` - for the random number generator


    EXAMPLE: We show the edge list of a random graph with 10 nodes and
    a power law exponent of 2.

    ::

        sage: graphs.RandomTreePowerlaw(10, 2).edges(labels=False)
        [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (6, 8), (6, 9)]

    ::

        sage: G = graphs.RandomTreePowerlaw(15, 2)
        sage: if G:
        ...    G.show()  # random output, long time
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    try:
        return graph.Graph(
            networkx.random_powerlaw_tree(n, gamma, seed=seed, tries=tries))
    except networkx.NetworkXError:
        return False
コード例 #33
0
def random_sublist_of_size(k, n):
    """
    INPUT:

    - k -- an integer
    - n -- an integer

    OUTPUT:

    a randomly chosen sublist of range(k) of size n.

    EXAMPLES::

        sage: import sage.matrix.matrix_integer_dense_saturation as s
        sage: s.random_sublist_of_size(10,3)
        [0, 1, 5]
        sage: s.random_sublist_of_size(10,7)
        [0, 1, 3, 4, 5, 7, 8]
    """
    if n > k:
        raise ValueError("n must be <= len(v)")
    if n == k:
        return range(k)
    if n >= k // 2 + 5:
        # use complement
        w = random_sublist_of_size(k, k - n)
        m = set(w)
        w = [z for z in xrange(k) if z not in m]
        assert (len(w)) == n
        return w

    randrange = current_randstate().python_random().randrange

    w = set([])
    while len(w) < n:
        z = randrange(k)
        if not z in w:
            w.add(z)
    w = sorted(w)
    return w
コード例 #34
0
def random_sublist_of_size(k, n):
    """
    INPUT:

    - k -- an integer
    - n -- an integer

    OUTPUT:

    a randomly chosen sublist of range(k) of size n.

    EXAMPLES::

        sage: import sage.matrix.matrix_integer_dense_saturation as s
        sage: s.random_sublist_of_size(10,3)
        [0, 1, 5]
        sage: s.random_sublist_of_size(10,7)
        [0, 1, 3, 4, 5, 7, 8]
    """
    if n > k:
        raise ValueError("n must be <= len(v)")
    if n == k:
        return range(k)
    if n >= k // 2 + 5:
        # use complement
        w = random_sublist_of_size(k, k - n)
        m = set(w)
        w = [z for z in xrange(k) if z not in m]
        assert (len(w)) == n
        return w

    randrange = current_randstate().python_random().randrange

    w = set([])
    while len(w) < n:
        z = randrange(k)
        if not z in w:
            w.add(z)
    w = sorted(w)
    return w
コード例 #35
0
def RandomLobster(n, p, q, seed=None):
    """
    Returns a random lobster.

    A lobster is a tree that reduces to a caterpillar when pruning all
    leaf vertices. A caterpillar is a tree that reduces to a path when
    pruning all leaf vertices (q=0).

    INPUT:


    -  ``n`` - expected number of vertices in the backbone

    -  ``p`` - probability of adding an edge to the
       backbone

    -  ``q`` - probability of adding an edge (claw) to the
       arms

    -  ``seed`` - for the random number generator


    EXAMPLE: We show the edge list of a random graph with 3 backbone
    nodes and probabilities `p = 0.7` and `q = 0.3`::

        sage: graphs.RandomLobster(3, 0.7, 0.3).edges(labels=False)
        [(0, 1), (1, 2)]

    ::

        sage: G = graphs.RandomLobster(9, .6, .3)
        sage: G.show()  # long time
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return graph.Graph(networkx.random_lobster(n, p, q, seed=seed))
コード例 #36
0
    def RandomDirectedGN(self, n, kernel=lambda x: x, seed=None):
        """
        Returns a random GN (growing network) digraph with n vertices.

        The digraph is constructed by adding vertices with a link to one
        previously added vertex. The vertex to link to is chosen with a
        preferential attachment model, i.e. probability is proportional to
        degree. The default attachment kernel is a linear function of
        degree. The digraph is always a tree, so in particular it is a
        directed acyclic graph.

        INPUT:


        -  ``n`` - number of vertices.

        -  ``kernel`` - the attachment kernel

        -  ``seed`` - for the random number generator


        EXAMPLE::

            sage: D = digraphs.RandomDirectedGN(25)
            sage: D.edges(labels=False)
            [(1, 0), (2, 0), (3, 1), (4, 0), (5, 0), (6, 1), (7, 0), (8, 3), (9, 0), (10, 8), (11, 3), (12, 9), (13, 8), (14, 0), (15, 11), (16, 11), (17, 5), (18, 11), (19, 6), (20, 5), (21, 14), (22, 5), (23, 18), (24, 11)]
            sage: D.show()  # long time

        REFERENCE:

        - [1] Krapivsky, P.L. and Redner, S. Organization of Growing
          Random Networks, Phys. Rev. E vol. 63 (2001), p. 066123.
        """
        if seed is None:
            seed = current_randstate().long_seed()
        import networkx
        return DiGraph(networkx.gn_graph(n, kernel, seed=seed))
コード例 #37
0
    def RandomDirectedGNR(self, n, p, seed=None):
        """
        Returns a random GNR (growing network with redirection) digraph
        with n vertices and redirection probability p.

        The digraph is constructed by adding vertices with a link to one
        previously added vertex. The vertex to link to is chosen uniformly.
        With probability p, the arc is instead redirected to the successor
        vertex. The digraph is always a tree.

        INPUT:


        -  ``n`` - number of vertices.

        -  ``p`` - redirection probability

        -  ``seed`` - for the random number generator.


        EXAMPLE::

            sage: D = digraphs.RandomDirectedGNR(25, .2)
            sage: D.edges(labels=False)
            [(1, 0), (2, 0), (2, 1), (3, 0), (4, 0), (4, 1), (5, 0), (5, 1), (5, 2), (6, 0), (6, 1), (7, 0), (7, 1), (7, 4), (8, 0), (9, 0), (9, 8), (10, 0), (10, 1), (10, 2), (10, 5), (11, 0), (11, 8), (11, 9), (12, 0), (12, 8), (12, 9), (13, 0), (13, 1), (14, 0), (14, 8), (14, 9), (14, 12), (15, 0), (15, 8), (15, 9), (15, 12), (16, 0), (16, 1), (16, 4), (16, 7), (17, 0), (17, 8), (17, 9), (17, 12), (18, 0), (18, 8), (19, 0), (19, 1), (19, 4), (19, 7), (20, 0), (20, 1), (20, 4), (20, 7), (20, 16), (21, 0), (21, 8), (22, 0), (22, 1), (22, 4), (22, 7), (22, 19), (23, 0), (23, 8), (23, 9), (23, 12), (23, 14), (24, 0), (24, 8), (24, 9), (24, 12), (24, 15)]
            sage: D.show()  # long time

        REFERENCE:

        - [1] Krapivsky, P.L. and Redner, S. Organization of Growing
          Random Networks, Phys. Rev. E vol. 63 (2001), p. 066123.
        """
        if seed is None:
            seed = current_randstate().long_seed()
        import networkx
        return DiGraph(networkx.gnc_graph(n, seed=seed))
コード例 #38
0
ファイル: degree_sequence.py プロジェクト: yjjcc/sage
def DegreeSequenceExpected(deg_sequence, seed=None):
    """
    Returns a random graph with expected given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    - ``deg_sequence`` - a list of integers with each entry corresponding to the
      expected degree of a different vertex.

    - ``seed`` - a ``random.Random`` seed or a Python ``int`` for the random
      number generator (default: ``None``).


    EXAMPLES::

        sage: G = graphs.DegreeSequenceExpected([1,2,3,2,3])
        sage: G.edges(labels=False)
        [(0, 3), (1, 3), (1, 4), (4, 4)]                    # 32-bit 
        [(0, 3), (1, 4), (2, 2), (2, 3), (2, 4), (4, 4)]    # 64-bit
        sage: G.show()  # long time

    REFERENCE:

    [CL2002]_
    """
    if seed is None:
        seed = int(current_randstate().long_seed() % sys.maxsize)
    import networkx
    return Graph(networkx.expected_degree_graph([int(i) for i in deg_sequence],
                                                seed=seed),
                 loops=True)
コード例 #39
0
def DegreeSequenceExpected(deg_sequence, seed=None):
    """
    Returns a random graph with expected given degree sequence. Raises
    a NetworkX error if the proposed degree sequence cannot be that of
    a graph.

    One requirement is that the sum of the degrees must be even, since
    every edge must be incident with two vertices.

    INPUT:

    -  ``deg_sequence`` - a list of integers with each
       entry corresponding to the expected degree of a different vertex.

    -  ``seed`` - for the random number generator.


    EXAMPLES::

        sage: G = graphs.DegreeSequenceExpected([1,2,3,2,3])
        sage: G.edges(labels=False)
        [(0, 2), (0, 3), (1, 1), (1, 4), (2, 3), (2, 4), (3, 4), (4, 4)]
        sage: G.show()  # long time

    REFERENCE:

    .. [ChungLu2002] Chung, Fan and Lu, L. Connected components in random
      graphs with given expected degree sequences.
      Ann. Combinatorics (6), 2002 pp. 125-145.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx
    return Graph(networkx.expected_degree_graph([int(i) for i in deg_sequence],
                                                seed=seed),
                 loops=True)
コード例 #40
0
def RandomGNP(n, p, seed=None, fast=True, method='Sage'):
    r"""
    Returns a random graph on `n` nodes. Each edge is inserted independently
    with probability `p`.

    INPUTS:

    - ``n`` -- number of nodes of the digraph

    - ``p`` -- probability of an edge

    - ``seed`` -- integer seed for random number generator (default=None).

    - ``fast`` -- boolean set to True (default) to use the algorithm with
      time complexity in `O(n+m)` proposed in [3]_. It is designed for
      generating large sparse graphs. It is faster than other methods for
      *LARGE* instances (try it to know whether it is useful for you).

    - ``method`` -- By default (```method='Sage'``), this function uses the
      method implemented in ```sage.graphs.graph_generators_pyx.pyx``. When
      ``method='networkx'``, this function calls the NetworkX function
      ``fast_gnp_random_graph``, unless ``fast=False``, then
      ``gnp_random_graph``. Try them to know which method is the best for
      you. The ``fast`` parameter is not taken into account by the 'Sage'
      method so far.

    REFERENCES:

    .. [1] P. Erdos and A. Renyi. On Random Graphs, Publ.  Math. 6, 290 (1959).

    .. [2] E. N. Gilbert. Random Graphs, Ann. Math.  Stat., 30, 1141 (1959).

    .. [3] V. Batagelj and U. Brandes. Efficient generation of large
           random networks. Phys. Rev. E, 71, 036113, 2005.

    PLOTTING: When plotting, this graph will use the default spring-layout
    algorithm, unless a position dictionary is specified.

    EXAMPLES: We show the edge list of a random graph on 6 nodes with
    probability `p = .4`::

        sage: set_random_seed(0)
        sage: graphs.RandomGNP(6, .4).edges(labels=False)
        [(0, 1), (0, 5), (1, 2), (2, 4), (3, 4), (3, 5), (4, 5)]

    We plot a random graph on 12 nodes with probability
    `p = .71`::

        sage: gnp = graphs.RandomGNP(12,.71)
        sage: gnp.show() # long time

    We view many random graphs using a graphics array::

        sage: g = []
        sage: j = []
        sage: for i in range(9):
        ...    k = graphs.RandomGNP(i+3,.43)
        ...    g.append(k)
        ...
        sage: for i in range(3):
        ...    n = []
        ...    for m in range(3):
        ...        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
        ...    j.append(n)
        ...
        sage: G = sage.plot.graphics.GraphicsArray(j)
        sage: G.show() # long time
        sage: graphs.RandomGNP(4,1)
        Complete graph: Graph on 4 vertices

    TESTS::

        sage: graphs.RandomGNP(50,.2,method=50)
        Traceback (most recent call last):
        ...
        ValueError: 'method' must be equal to 'networkx' or to 'Sage'.
        sage: set_random_seed(0)
        sage: graphs.RandomGNP(50,.2, method="Sage").size()
        243
        sage: graphs.RandomGNP(50,.2, method="networkx").size()
        258
    """
    if n < 0:
        raise ValueError("The number of nodes must be positive or null.")
    if 0.0 > p or 1.0 < p:
        raise ValueError("The probability p must be in [0..1].")

    if seed is None:
        seed = current_randstate().long_seed()
    if p == 1:
        from sage.graphs.generators.basic import CompleteGraph
        return CompleteGraph(n)

    if method == 'networkx':
        import networkx
        if fast:
            G = networkx.fast_gnp_random_graph(n, p, seed=seed)
        else:
            G = networkx.gnp_random_graph(n, p, seed=seed)
        return graph.Graph(G)
    elif method in ['Sage', 'sage']:
        # We use the Sage generator
        from sage.graphs.graph_generators_pyx import RandomGNP as sageGNP
        return sageGNP(n, p)
    else:
        raise ValueError("'method' must be equal to 'networkx' or to 'Sage'.")
コード例 #41
0
ファイル: random.py プロジェクト: NitikaAgarwal/sage
def RandomGNP(n, p, seed=None, fast=True, method='Sage'):
    r"""
    Returns a random graph on `n` nodes. Each edge is inserted independently
    with probability `p`.

    INPUTS:

    - ``n`` -- number of nodes of the graph

    - ``p`` -- probability of an edge

    - ``seed`` -- integer seed for random number generator (default=None).

    - ``fast`` -- boolean set to True (default) to use the algorithm with
      time complexity in `O(n+m)` proposed in [BatBra2005]_. It is designed
      for generating large sparse graphs. It is faster than other methods for
      *LARGE* instances (try it to know whether it is useful for you).

    - ``method`` -- By default (```method='Sage'``), this function uses the
      method implemented in ```sage.graphs.graph_generators_pyx.pyx``. When
      ``method='networkx'``, this function calls the NetworkX function
      ``fast_gnp_random_graph``, unless ``fast=False``, then
      ``gnp_random_graph``. Try them to know which method is the best for
      you. The ``fast`` parameter is not taken into account by the 'Sage'
      method so far.

    REFERENCES:

    .. [ErdRen1959] P. Erdos and A. Renyi. On Random Graphs, Publ.
       Math. 6, 290 (1959).

    .. [Gilbert1959] E. N. Gilbert. Random Graphs, Ann. Math. Stat.,
       30, 1141 (1959).

    .. [BatBra2005] V. Batagelj and U. Brandes. Efficient generation of
       large random networks. Phys. Rev. E, 71, 036113, 2005.

    PLOTTING: When plotting, this graph will use the default spring-layout
    algorithm, unless a position dictionary is specified.

    EXAMPLES: We show the edge list of a random graph on 6 nodes with
    probability `p = .4`::

        sage: set_random_seed(0)
        sage: graphs.RandomGNP(6, .4).edges(labels=False)
        [(0, 1), (0, 5), (1, 2), (2, 4), (3, 4), (3, 5), (4, 5)]

    We plot a random graph on 12 nodes with probability `p = .71`::

        sage: gnp = graphs.RandomGNP(12,.71)
        sage: gnp.show() # long time

    We view many random graphs using a graphics array::

        sage: g = []
        sage: j = []
        sage: for i in range(9):
        ....:     k = graphs.RandomGNP(i+3,.43)
        ....:     g.append(k)
        sage: for i in range(3):
        ....:     n = []
        ....:     for m in range(3):
        ....:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
        ....:     j.append(n)
        sage: G = sage.plot.graphics.GraphicsArray(j)
        sage: G.show() # long time
        sage: graphs.RandomGNP(4,1)
        Complete graph: Graph on 4 vertices

    TESTS::

        sage: graphs.RandomGNP(50,.2,method=50)
        Traceback (most recent call last):
        ...
        ValueError: 'method' must be equal to 'networkx' or to 'Sage'.
        sage: set_random_seed(0)
        sage: graphs.RandomGNP(50,.2, method="Sage").size()
        243
        sage: graphs.RandomGNP(50,.2, method="networkx").size()
        258
    """
    if n < 0:
        raise ValueError("The number of nodes must be positive or null.")
    if 0.0 > p or 1.0 < p:
        raise ValueError("The probability p must be in [0..1].")

    if seed is None:
        seed = current_randstate().long_seed()
    if p == 1:
        from sage.graphs.generators.basic import CompleteGraph
        return CompleteGraph(n)

    if method == 'networkx':
        import networkx
        if fast:
            G = networkx.fast_gnp_random_graph(n, p, seed=seed)
        else:
            G = networkx.gnp_random_graph(n, p, seed=seed)
        return Graph(G)
    elif method in ['Sage', 'sage']:
        # We use the Sage generator
        from sage.graphs.graph_generators_pyx import RandomGNP as sageGNP
        return sageGNP(n, p)
    else:
        raise ValueError("'method' must be equal to 'networkx' or to 'Sage'.")
コード例 #42
0
ファイル: gp_simon.py プロジェクト: DrXyzzy/sage
def simon_two_descent(E, verbose=0, lim1=None, lim3=None, limtriv=None,
                      maxprob=20, limbigprime=30, known_points=[]):
    """
    Interface to Simon's gp script for two-descent.

    .. NOTE::

       Users should instead run E.simon_two_descent()

    EXAMPLES::

        sage: import sage.schemes.elliptic_curves.gp_simon
        sage: E=EllipticCurve('389a1')
        sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
        (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])

    TESTS::

        sage: E = EllipticCurve('37a1').change_ring(QuadraticField(-11,'x'))
        sage: E.simon_two_descent()
        (1, 1, [(0 : 0 : 1)])

    An example with an elliptic curve defined over a relative number field::

        sage: F.<a> = QuadraticField(29)
        sage: x = QQ['x'].gen()
        sage: K.<b> = F.extension(x^2-1/2*a+1/2)
        sage: E = EllipticCurve(K,[1, 0, 5/2*a + 27/2, 0, 0]) # long time (about 3 s)
        sage: E.simon_two_descent(lim1=2, limtriv=3)
        (1, 1, ...)

    Check that :trac:`16022` is fixed::

        sage: K.<y> = NumberField(x^4 + x^2 - 7)
        sage: E = EllipticCurve(K, [1, 0, 5*y^2 + 16, 0, 0])
        sage: E.simon_two_descent(lim1=2, limtriv=3)  # long time (about 3 s)
        (1, 1, ...)

    An example that checks that :trac:`9322` is fixed (it should take less than a second to run)

        sage: K.<w> = NumberField(x^2-x-232)
        sage: E = EllipticCurve([2-w,18+3*w,209+9*w,2581+175*w,852-55*w])
        sage: E.simon_two_descent()
        (0, 2, [])
    """
    init()

    current_randstate().set_seed_gp(gp)

    K = E.base_ring()
    K_orig = K
    # The following is to correct the bug at \#5204: the gp script
    # fails when K is a number field whose generator is called 'x'.
    # It also deals with relative number fields.
    E_orig = E
    if not K is QQ:
        K = K_orig.absolute_field('a')
        from_K,to_K = K.structure()
        E = E_orig.change_ring(to_K)
        known_points = [P.change_ring(to_K) for P in known_points]
        # Simon's program requires that this name be y.
        with localvars(K.polynomial().parent(), 'y'):
            gp.eval("K = bnfinit(%s);" % K.polynomial())
            if verbose >= 2:
                print("K = bnfinit(%s);" % K.polynomial())
        gp.eval("%s = Mod(y,K.pol);" % K.gen())
        if verbose >= 2:
            print("%s = Mod(y,K.pol);" % K.gen())
    else:
        from_K = lambda x: x
        to_K = lambda x: x

    # The block below mimicks the defaults in Simon's scripts, and needs to be changed
    # when these are updated.
    if K is QQ:
        cmd = 'ellrank(%s, %s);' % (list(E.ainvs()), [P._pari_() for P in known_points])
        if lim1 is None:
            lim1 = 5
        if lim3 is None:
            lim3 = 50
        if limtriv is None:
            limtriv = 3
    else:
        cmd = 'bnfellrank(K, %s, %s);' % (list(E.ainvs()), [P._pari_() for P in known_points])
        if lim1 is None:
            lim1 = 2
        if lim3 is None:
            lim3 = 4
        if limtriv is None:
            limtriv = 2

    gp('DEBUGLEVEL_ell=%s; LIM1=%s; LIM3=%s; LIMTRIV=%s; MAXPROB=%s; LIMBIGPRIME=%s;'%(
       verbose, lim1, lim3, limtriv, maxprob, limbigprime))

    if verbose >= 2:
        print(cmd)
    s = gp.eval('ans=%s;'%cmd)
    if s.find(" *** ") != -1:
        raise RuntimeError("\n%s\nAn error occurred while running Simon's 2-descent program"%s)
    if verbose > 0:
        print(s)
    v = gp.eval('ans')
    if v=='ans': # then the call to ellrank() or bnfellrank() failed
        raise RuntimeError("An error occurred while running Simon's 2-descent program")
    if verbose >= 2:
        print("v = %s" % v)

    # pari represents field elements as Mod(poly, defining-poly)
    # so this function will return the respective elements of K
    def _gp_mod(*args):
        return args[0]
    ans = sage_eval(v, {'Mod': _gp_mod, 'y': K.gen(0)})
    lower = ZZ(ans[0])
    upper = ZZ(ans[1])
    points = [E_orig([from_K(c) for c in list(P)]) for P in ans[2]]
    points = [P for P in points if P.has_infinite_order()]
    return lower, upper, points
コード例 #43
0
ファイル: gp_simon.py プロジェクト: sajedel/testsage
def simon_two_descent(E, verbose=0, lim1=5, lim3=50, limtriv=10, maxprob=20, limbigprime=30):
    """
    Interface to Simon's gp script for two-descent.

    .. NOTE::

       Users should instead run E.simon_two_descent()

    EXAMPLES::

        sage: import sage.schemes.elliptic_curves.gp_simon
        sage: E=EllipticCurve('389a1')
        sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
        [2, 2, [(1 : 0 : 1), (-11/9 : -55/27 : 1)]]
        sage: E.simon_two_descent()
        (2, 2, [(1 : 0 : 1), (-11/9 : -55/27 : 1)])

    TESTS::

        sage: E = EllipticCurve('37a1').change_ring(QuadraticField(-11,'x'))
        sage: E.simon_two_descent()
        (1, 1, [(-1 : 0 : 1)])

    """
    init()

    current_randstate().set_seed_gp(gp)

    K = E.base_ring()
    K_orig = K
    # The following is to correct the bug at \#5204: the gp script
    # fails when K is a number field whose generator is called 'x'.
    if not K is QQ:
        K = K.change_names('a')
    E_orig = E
    E = EllipticCurve(K,[K(list(a)) for a in E.ainvs()])
    F = E.integral_model()

    if K != QQ:
        # Simon's program requires that this name be y.
        with localvars(K.polynomial().parent(), 'y'):
            gp.eval("K = bnfinit(%s);" % K.polynomial())
            if verbose >= 2:
                print "K = bnfinit(%s);" % K.polynomial()
        gp.eval("%s = Mod(y,K.pol);" % K.gen())
        if verbose >= 2:
            print "%s = Mod(y,K.pol);" % K.gen()

    if K == QQ:
        cmd = 'ellrank([%s,%s,%s,%s,%s]);' % F.ainvs()
    else:
        cmd = 'bnfellrank(K, [%s,%s,%s,%s,%s]);' % F.ainvs()

    gp('DEBUGLEVEL_ell=%s; LIM1=%s; LIM3=%s; LIMTRIV=%s; MAXPROB=%s; LIMBIGPRIME=%s;'%(
        verbose, lim1, lim3, limtriv, maxprob, limbigprime))

    if verbose >= 2:
        print cmd
    s = gp.eval('ans=%s;'%cmd)
    if s.find("***") != -1:
        raise RuntimeError, "\n%s\nAn error occurred while running Simon's 2-descent program"%s
    if verbose > 0:
        print s
    v = gp.eval('ans')
    if v=='ans': # then the call to ellrank() or bnfellrank() failed
        return 'fail'
    if verbose >= 2:
        print "v = ", v
    # pari represents field elements as Mod(poly, defining-poly)
    # so this function will return the respective elements of K
    def _gp_mod(*args):
        return args[0]
    ans = sage_eval(v, {'Mod': _gp_mod, 'y': K.gen(0)})
    inv_transform = F.isomorphism_to(E)
    ans[2] = [inv_transform(F(P)) for P in ans[2]]
    ans[2] = [E_orig([K_orig(list(c)) for c in list(P)]) for P in ans[2]]
    return ans
コード例 #44
0
def simon_two_descent(E,
                      verbose=0,
                      lim1=None,
                      lim3=None,
                      limtriv=None,
                      maxprob=20,
                      limbigprime=30,
                      known_points=[]):
    """
    Interface to Simon's gp script for two-descent.

    .. NOTE::

       Users should instead run E.simon_two_descent()

    EXAMPLES::

        sage: import sage.schemes.elliptic_curves.gp_simon
        sage: E=EllipticCurve('389a1')
        sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
        (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])

    TESTS::

        sage: E = EllipticCurve('37a1').change_ring(QuadraticField(-11,'x'))
        sage: E.simon_two_descent()
        (1, 1, [(0 : 0 : 1)])

    An example with an elliptic curve defined over a relative number field::

        sage: F.<a> = QuadraticField(29)
        sage: x = QQ['x'].gen()
        sage: K.<b> = F.extension(x^2-1/2*a+1/2)
        sage: E = EllipticCurve(K,[1, 0, 5/2*a + 27/2, 0, 0]) # long time (about 3 s)
        sage: E.simon_two_descent(lim1=2, limtriv=3)
        (1, 1, ...)

    Check that :trac:`16022` is fixed::

        sage: K.<y> = NumberField(x^4 + x^2 - 7)
        sage: E = EllipticCurve(K, [1, 0, 5*y^2 + 16, 0, 0])
        sage: E.simon_two_descent(lim1=2, limtriv=3)  # long time (about 3 s)
        (1, 1, ...)

    An example that checks that :trac:`9322` is fixed (it should take less than a second to run)::

        sage: K.<w> = NumberField(x^2-x-232)
        sage: E = EllipticCurve([2-w,18+3*w,209+9*w,2581+175*w,852-55*w])
        sage: E.simon_two_descent()
        (0, 2, [])
    """
    init()

    current_randstate().set_seed_gp(gp)

    K = E.base_ring()
    K_orig = K
    # The following is to correct the bug at \#5204: the gp script
    # fails when K is a number field whose generator is called 'x'.
    # It also deals with relative number fields.
    E_orig = E
    if not K is QQ:
        K = K_orig.absolute_field('a')
        from_K, to_K = K.structure()
        E = E_orig.change_ring(to_K)
        known_points = [P.change_ring(to_K) for P in known_points]
        # Simon's program requires that this name be y.
        with localvars(K.polynomial().parent(), 'y'):
            gp.eval("K = bnfinit(%s);" % K.polynomial())
            if verbose >= 2:
                print("K = bnfinit(%s);" % K.polynomial())
        gp.eval("%s = Mod(y,K.pol);" % K.gen())
        if verbose >= 2:
            print("%s = Mod(y,K.pol);" % K.gen())
    else:
        from_K = lambda x: x
        to_K = lambda x: x

    # The block below mimicks the defaults in Simon's scripts, and needs to be changed
    # when these are updated.
    if K is QQ:
        cmd = 'ellrank(%s, %s);' % (list(
            E.ainvs()), [P._pari_() for P in known_points])
        if lim1 is None:
            lim1 = 5
        if lim3 is None:
            lim3 = 50
        if limtriv is None:
            limtriv = 3
    else:
        cmd = 'bnfellrank(K, %s, %s);' % (list(
            E.ainvs()), [P._pari_() for P in known_points])
        if lim1 is None:
            lim1 = 2
        if lim3 is None:
            lim3 = 4
        if limtriv is None:
            limtriv = 2

    gp('DEBUGLEVEL_ell=%s; LIM1=%s; LIM3=%s; LIMTRIV=%s; MAXPROB=%s; LIMBIGPRIME=%s;'
       % (verbose, lim1, lim3, limtriv, maxprob, limbigprime))

    if verbose >= 2:
        print(cmd)
    s = gp.eval('ans=%s;' % cmd)
    if s.find(" *** ") != -1:
        raise RuntimeError(
            "\n%s\nAn error occurred while running Simon's 2-descent program" %
            s)
    if verbose > 0:
        print(s)
    v = gp.eval('ans')
    if v == 'ans':  # then the call to ellrank() or bnfellrank() failed
        raise RuntimeError(
            "An error occurred while running Simon's 2-descent program")
    if verbose >= 2:
        print("v = %s" % v)

    # pari represents field elements as Mod(poly, defining-poly)
    # so this function will return the respective elements of K
    def _gp_mod(*args):
        return args[0]

    ans = sage_eval(v, {'Mod': _gp_mod, 'y': K.gen(0)})
    lower = ZZ(ans[0])
    upper = ZZ(ans[1])
    points = [E_orig([from_K(c) for c in list(P)]) for P in ans[2]]
    points = [P for P in points if P.has_infinite_order()]
    return lower, upper, points