def Babai_CVP(mat, target): M = IntegerLattice(mat, lll_reduce=True).reduced_basis G = M.gram_schmidt()[0] diff = target for i in reversed(range(G.nrows())): diff -= M[i] * ((diff * G[i]) / (G[i] * G[i])).round() return target - diff
def NTRU(h, K, q): basis = K.integral_basis() H = h.matrix() return IntegerLattice(block_matrix([[Integer(1), H], [Integer(0), Integer(q)]]), lll_reduce=True)
def taut_cone_homological_dim(tri, angle): # find the dimension of the projection of the taut cone into # homology # boundaries of tets bdys = zeroth_coboundary(tri) bdys = matrix_transpose(bdys) rays = taut_rays(tri, angle) # but these are all 'upwards', so we need to fix the # co-orientations coorient = is_transverse_taut(tri, angle, return_type = "face_coorientations") rays = [[int(a * b) for a, b in zip(coorient, ray)] for ray in rays] # now work in the space of two-chains Rays = IntegerLattice(rays + bdys) Bdys = Matrix(bdys) Cobs = Bdys.transpose() Anns = Cobs.kernel() return Rays.intersection(Anns).dimension()
def NTRU_subfield(hprime, q, nprime, r): z = hprime.parent().gen() mat = [] for i in range(nprime): coordinate = (hprime * z**(r * i)).vector().list() mat.append([coordinate[r * j] for j in range(nprime)]) Hprime = matrix(mat) return IntegerLattice(block_matrix([[Integer(1), Hprime], [Integer(0), Integer(q)]]), lll_reduce=True)
def gen_lattice(type='modular', n=4, m=8, q=11, seed=None, quotient=None, dual=False, ntl=False, lattice=False): r""" This function generates different types of integral lattice bases of row vectors relevant in cryptography. Randomness can be set either with ``seed``, or by using :func:`sage.misc.randstate.set_random_seed`. INPUT: - ``type`` -- one of the following strings - ``'modular'`` (default) -- A class of lattices for which asymptotic worst-case to average-case connections hold. For more refer to [Aj1996]_. - ``'random'`` -- Special case of modular (n=1). A dense class of lattice used for testing basis reduction algorithms proposed by Goldstein and Mayer [GM2002]_. - ``'ideal'`` -- Special case of modular. Allows for a more compact representation proposed by [LM2006]_. - ``'cyclotomic'`` -- Special case of ideal. Allows for efficient processing proposed by [LM2006]_. - ``n`` -- Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`. For ideal lattices this is also the degree of the quotient polynomial. - ``m`` -- Lattice dimension, `L \subseteq Z^m`. - ``q`` -- Coefficient size, `q-Z^m \subseteq L`. - ``seed`` -- Randomness seed. - ``quotient`` -- For the type ideal, this determines the quotient polynomial. Ignored for all other types. - ``dual`` -- Set this flag if you want a basis for `q-dual(L)`, for example for Regev's LWE bases [Reg2005]_. - ``ntl`` -- Set this flag if you want the lattice basis in NTL readable format. - ``lattice`` -- Set this flag if you want a :class:`FreeModule_submodule_with_basis_integer` object instead of an integer matrix representing the basis. OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left, dual: lower_right) basis of row vectors for the lattice in question. EXAMPLES: Modular basis:: sage: sage.crypto.gen_lattice(m=10, seed=42) [11 0 0 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0 0 0] [ 0 0 0 11 0 0 0 0 0 0] [ 2 4 3 5 1 0 0 0 0 0] [ 1 -5 -4 2 0 1 0 0 0 0] [-4 3 -1 1 0 0 1 0 0 0] [-2 -3 -4 -1 0 0 0 1 0 0] [-5 -5 3 3 0 0 0 0 1 0] [-4 -3 2 -5 0 0 0 0 0 1] Random basis:: sage: sage.crypto.gen_lattice(type='random', n=1, m=10, q=11^4, seed=42) [14641 0 0 0 0 0 0 0 0 0] [ 431 1 0 0 0 0 0 0 0 0] [-4792 0 1 0 0 0 0 0 0 0] [ 1015 0 0 1 0 0 0 0 0 0] [-3086 0 0 0 1 0 0 0 0 0] [-5378 0 0 0 0 1 0 0 0 0] [ 4769 0 0 0 0 0 1 0 0 0] [-1159 0 0 0 0 0 0 1 0 0] [ 3082 0 0 0 0 0 0 0 1 0] [-4580 0 0 0 0 0 0 0 0 1] Ideal bases with quotient x^n-1, m=2*n are NTRU bases:: sage: sage.crypto.gen_lattice(type='ideal', seed=42, quotient=x^4-1) [11 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0] [ 0 0 0 11 0 0 0 0] [-2 -3 -3 4 1 0 0 0] [ 4 -2 -3 -3 0 1 0 0] [-3 4 -2 -3 0 0 1 0] [-3 -3 4 -2 0 0 0 1] Ideal bases also work with polynomials:: sage: R.<t> = PolynomialRing(ZZ) sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=t^4-1) [11 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0] [ 0 0 0 11 0 0 0 0] [ 1 4 -3 3 1 0 0 0] [ 3 1 4 -3 0 1 0 0] [-3 3 1 4 0 0 1 0] [ 4 -3 3 1 0 0 0 1] Cyclotomic bases with n=2^k are SWIFFT bases:: sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42) [11 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0] [ 0 0 0 11 0 0 0 0] [-2 -3 -3 4 1 0 0 0] [-4 -2 -3 -3 0 1 0 0] [ 3 -4 -2 -3 0 0 1 0] [ 3 3 -4 -2 0 0 0 1] Dual modular bases are related to Regev's famous public-key encryption [Reg2005]_:: sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True) [ 0 0 0 0 0 0 0 0 0 11] [ 0 0 0 0 0 0 0 0 11 0] [ 0 0 0 0 0 0 0 11 0 0] [ 0 0 0 0 0 0 11 0 0 0] [ 0 0 0 0 0 11 0 0 0 0] [ 0 0 0 0 11 0 0 0 0 0] [ 0 0 0 1 -5 -2 -1 1 -3 5] [ 0 0 1 0 -3 4 1 4 -3 -2] [ 0 1 0 0 -4 5 -3 3 5 3] [ 1 0 0 0 -2 -1 4 2 5 4] Relation of primal and dual bases:: sage: B_primal=sage.crypto.gen_lattice(m=10, q=11, seed=42) sage: B_dual=sage.crypto.gen_lattice(m=10, q=11, seed=42, dual=True) sage: B_dual_alt=transpose(11*B_primal.inverse()).change_ring(ZZ) sage: B_dual_alt.hermite_form() == B_dual.hermite_form() True TESTS: Test some bad quotient polynomials:: sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=cos(x)) Traceback (most recent call last): ... TypeError: unable to convert cos(x) to an integer sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=x^23-1) Traceback (most recent call last): ... ValueError: ideal basis requires n = quotient.degree() sage: R.<u,v> = ZZ[] sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=u+v) Traceback (most recent call last): ... TypeError: quotient should be a univariate polynomial We are testing output format choices:: sage: sage.crypto.gen_lattice(m=10, q=11, seed=42) [11 0 0 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0 0 0] [ 0 0 0 11 0 0 0 0 0 0] [ 2 4 3 5 1 0 0 0 0 0] [ 1 -5 -4 2 0 1 0 0 0 0] [-4 3 -1 1 0 0 1 0 0 0] [-2 -3 -4 -1 0 0 0 1 0 0] [-5 -5 3 3 0 0 0 0 1 0] [-4 -3 2 -5 0 0 0 0 0 1] sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, ntl=True) [ [11 0 0 0 0 0 0 0 0 0] [0 11 0 0 0 0 0 0 0 0] [0 0 11 0 0 0 0 0 0 0] [0 0 0 11 0 0 0 0 0 0] [2 4 3 5 1 0 0 0 0 0] [1 -5 -4 2 0 1 0 0 0 0] [-4 3 -1 1 0 0 1 0 0 0] [-2 -3 -4 -1 0 0 0 1 0 0] [-5 -5 3 3 0 0 0 0 1 0] [-4 -3 2 -5 0 0 0 0 0 1] ] sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, lattice=True) Free module of degree 10 and rank 10 over Integer Ring User basis matrix: [ 0 0 1 1 0 -1 -1 -1 1 0] [-1 1 0 1 0 1 1 0 1 1] [-1 0 0 0 -1 1 1 -2 0 0] [-1 -1 0 1 1 0 0 1 1 -1] [ 1 0 -1 0 0 0 -2 -2 0 0] [ 2 -1 0 0 1 0 1 0 0 -1] [-1 1 -1 0 1 -1 1 0 -1 -2] [ 0 0 -1 3 0 0 0 -1 -1 -1] [ 0 -1 0 -1 2 0 -1 0 0 2] [ 0 1 1 0 1 1 -2 1 -1 -2] """ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.matrix.constructor import identity_matrix, block_matrix from sage.matrix.matrix_space import MatrixSpace from sage.rings.integer_ring import IntegerRing if seed is not None: from sage.misc.randstate import set_random_seed set_random_seed(seed) if type == 'random': if n != 1: raise ValueError('random bases require n = 1') ZZ = IntegerRing() ZZ_q = IntegerModRing(q) A = identity_matrix(ZZ_q, n) if type == 'random' or type == 'modular': R = MatrixSpace(ZZ_q, m-n, n) A = A.stack(R.random_element()) elif type == 'ideal': if quotient is None: raise ValueError('ideal bases require a quotient polynomial') try: quotient = quotient.change_ring(ZZ_q) except (AttributeError, TypeError): quotient = quotient.polynomial(base_ring=ZZ_q) P = quotient.parent() # P should be a univariate polynomial ring over ZZ_q if not is_PolynomialRing(P): raise TypeError("quotient should be a univariate polynomial") assert P.base_ring() is ZZ_q if quotient.degree() != n: raise ValueError('ideal basis requires n = quotient.degree()') R = P.quotient(quotient) for i in range(m//n): A = A.stack(R.random_element().matrix()) elif type == 'cyclotomic': from sage.arith.all import euler_phi from sage.misc.functional import cyclotomic_polynomial # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n found = False for k in range(2*n,n,-1): if euler_phi(k) == n: found = True break if not found: raise ValueError("cyclotomic bases require that n " "is an image of Euler's totient function") R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x') for i in range(m//n): A = A.stack(R.random_element().matrix()) # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2 def minrep(a): if abs(a-q) < abs(a): return a-q else: return a A_prime = A[n:m].lift().apply_map(minrep) if not dual: B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ], subdivide=False) else: B = block_matrix([[ZZ.one(), -A_prime.transpose()], [ZZ.zero(), ZZ(q)]], subdivide=False) for i in range(m//2): B.swap_rows(i,m-i-1) if ntl and lattice: raise ValueError("Cannot specify ntl=True and lattice=True " "at the same time") if ntl: return B._ntl_() elif lattice: from sage.modules.free_module_integer import IntegerLattice return IntegerLattice(B) else: return B
def attack(m, q, r=4, sigma=3.0, subfield_only=False): K = CyclotomicField(m, 'z') z = K.gen() OK = K.ring_of_integers() G = K.galois_group() n = euler_phi(m) mprime = m / r nprime = euler_phi(mprime) Gprime = [tau for tau in G if tau(z**r) == z**r] R = PolynomialRing(IntegerRing(), 'a') a = R.gen() phim = a**n + 1 D = DiscreteGaussianDistributionIntegerSampler(sigma) print "sampling f,g" while True: f = sum([D() * z**i for i in range(n)]) fx = sum([f[i] * a**i for i in range(n)]) res = inverse(fx, phim, q) if res[0]: f_inv = sum([res[1][i] * z**i for i in range(n)]) print "f_inv * f = %s (mod %d)" % ((f * f_inv).mod(q), q) break g = sum([D() * z**i for i in range(n)]) print "done sampling f, g" #h = [g*f^{-1)]_q h = (g * f_inv).mod(q) lognorm_f = log(f.vector().norm(), 2) lognorm_g = log(g.vector().norm(), 2) print "f*h - g = %s" % (f * h - g).mod(q) print "log q = ", log(q, 2).n(precision) print "log |f| = %s, log |g| = %s" % (lognorm_f.n(precision), lognorm_g.n(precision)) print "log |(f,g)| = ", log( sqrt(f.vector().norm()**2 + g.vector().norm()**2), 2).n(precision) print "begin computing N(f), N(g), N(h), Tr(h), fbar" fprime = norm(f, Gprime) gprime = norm(g, Gprime) hprime = norm(h, Gprime).mod(q) htr = trace(h, Gprime) fbar = prod([tau(f) for tau in Gprime[1:]]) print "end computing N(f), N(g), N(h), Tr(h), fbar" lognorm_fp = log(fprime.vector().norm(), 2) lognorm_gp = log(gprime.vector().norm(), 2) print "%d * log |f| - log |f'| = %s" % (r, r * lognorm_f.n(precision) - lognorm_fp.n(precision)) print "log |(f', g')| = ", log( sqrt(fprime.vector().norm()**2 + gprime.vector().norm()**2), 2).n(precision) print "log |N(f), Tr(g fbar)| = ", log( sqrt(fprime.vector().norm()**2 + trace(g * fbar, Gprime).vector().norm()**2), 2).n(precision) #(fprime, gprime) lies in the lattice \Lambda_hprime^q print "f'*h' - g' = %s " % (hprime * fprime - gprime).mod(q) print "N(f) Tr(h) - Tr(g fbar) = %s" % (htr * fprime - trace(g * fbar, Gprime)).mod(q) if not subfield_only: ntru_full = NTRU(h, K, q) full_sv = ntru_full.shortest_vector() print "log |v| = %s" % log(full_sv.norm(), 2).n(precision) ntru_subfield = NTRU_subfield(hprime, q, nprime, r) ntru_trace_subfield = NTRU_subfield(htr, q, nprime, r) print "begin computing Shortest Vector of subfield lattice" norm_sv = ntru_subfield.shortest_vector() tr_sv = ntru_trace_subfield.shortest_vector() print "end computing Shortest Vector of subfield lattice" norm_xp = sum( [coerce(Integer, norm_sv[i]) * z**(r * i) for i in range(nprime)]) tr_xp = sum( [coerce(Integer, tr_sv[i]) * z**(r * i) for i in range(nprime)]) print "Norm map: log |(x',y')| = ", log(norm_sv.norm(), 2).n(precision) print "Trace map: log |(x', y')| = ", log(tr_sv.norm(), 2).n(precision) #test if xprime belongs to <fprime> mat = [] for i in range(nprime): coordinate = (fprime * z**(r * i)).vector().list() mat.append([coordinate[r * j] for j in range(nprime)]) FL = IntegerLattice(mat) print norm_sv[:nprime] in FL print tr_sv[:nprime] in FL norm_x = norm_xp norm_y = mod_q(norm_x * h, q) tr_x = tr_xp tr_y = mod_q(tr_x * h, q) print "Norm map: log |(x,y)| = ", log( sqrt(norm_x.vector().norm()**2 + norm_y.vector().norm()**2), 2).n(precision) print "Trace map: log |(x,y)| = ", log( sqrt(tr_x.vector().norm()**2 + tr_y.vector().norm()**2), 2).n(precision)
# B.swap_rows(i,m-i-1) # print("{0}\n".format(A_neg)) # B=block_matrix([[ZZ(q), ZZ.zero(),ZZ.zero()],[ZZ.one(),A_neg,ZZ.zero() ],[ZZ.zero(),b_neg,ZZ.one()]], # subdivide=False) #print("B=\n{0}".format(B)) print("B*A=\n{0}\n\n".format(B*A)) #print("A=\n{0}\n".format(A)) def remap(x): return minrep((x*251)%251) BL=B.BKZ(block_size=n/2.) y=(BL.solve_left(Z_fixed))#.apply_map(remap)) # print("y*B={0}".format(y*B)) print("y:=B.solve_left(Z_fixed)={0}".format(y)) # BL=B.BKZ(block_size=n/2.) print(BL[0]) print("shortest norm={0}".format(float(BL[0].norm()))) # L = IntegerLattice(B) # p # v=L.shortest_vector() # print("L.shortest_vector={0}, norm={1}".format(v,float(v.norm()))) if ntl and lattice: raise ValueError("Cannot specify ntl=True and lattice=True ") if ntl: return B._ntl_() elif lattice: from sage.modules.free_module_integer import IntegerLattice return IntegerLattice(B) else: return B
def gen_lattice(type='modular', n=4, m=8, q=11, seed=None, quotient=None, dual=False, ntl=False, lattice=False): """ This function generates different types of integral lattice bases of row vectors relevant in cryptography. Randomness can be set either with ``seed``, or by using :func:`sage.misc.randstate.set_random_seed`. INPUT: * ``type`` - one of the following strings * ``'modular'`` (default). A class of lattices for which asymptotic worst-case to average-case connections hold. For more refer to [A96]_. * ``'random'`` - Special case of modular (n=1). A dense class of lattice used for testing basis reduction algorithms proposed by Goldstein and Mayer [GM02]_. * ``'ideal'`` - Special case of modular. Allows for a more compact representation proposed by [LM06]_. * ``'cyclotomic'`` - Special case of ideal. Allows for efficient processing proposed by [LM06]_. * ``n`` - Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`. For ideal lattices this is also the degree of the quotient polynomial. * ``m`` - Lattice dimension, `L \subseteq Z^m`. * ``q`` - Coefficent size, `q*Z^m \subseteq L`. * ``seed`` - Randomness seed. * ``quotient`` - For the type ideal, this determines the quotient polynomial. Ignored for all other types. * ``dual`` - Set this flag if you want a basis for `q*dual(L)`, for example for Regev's LWE bases [R05]_. * ``ntl`` - Set this flag if you want the lattice basis in NTL readable format. * ``lattice`` - Set this flag if you want a :class:`FreeModule_submodule_with_basis_integer` object instead of an integer matrix representing the basis. OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left, dual: lower_right) basis of row vectors for the lattice in question. EXAMPLES: * Modular basis :: sage: sage.crypto.gen_lattice(m=10, seed=42) [11 0 0 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0 0 0] [ 0 0 0 11 0 0 0 0 0 0] [ 2 4 3 5 1 0 0 0 0 0] [ 1 -5 -4 2 0 1 0 0 0 0] [-4 3 -1 1 0 0 1 0 0 0] [-2 -3 -4 -1 0 0 0 1 0 0] [-5 -5 3 3 0 0 0 0 1 0] [-4 -3 2 -5 0 0 0 0 0 1] * Random basis :: sage: sage.crypto.gen_lattice(type='random', n=1, m=10, q=11^4, seed=42) [14641 0 0 0 0 0 0 0 0 0] [ 431 1 0 0 0 0 0 0 0 0] [-4792 0 1 0 0 0 0 0 0 0] [ 1015 0 0 1 0 0 0 0 0 0] [-3086 0 0 0 1 0 0 0 0 0] [-5378 0 0 0 0 1 0 0 0 0] [ 4769 0 0 0 0 0 1 0 0 0] [-1159 0 0 0 0 0 0 1 0 0] [ 3082 0 0 0 0 0 0 0 1 0] [-4580 0 0 0 0 0 0 0 0 1] * Ideal bases with quotient x^n-1, m=2*n are NTRU bases :: sage: sage.crypto.gen_lattice(type='ideal', seed=42, quotient=x^4-1) [11 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0] [ 0 0 0 11 0 0 0 0] [ 4 -2 -3 -3 1 0 0 0] [-3 4 -2 -3 0 1 0 0] [-3 -3 4 -2 0 0 1 0] [-2 -3 -3 4 0 0 0 1] * Cyclotomic bases with n=2^k are SWIFFT bases :: sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42) [11 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0] [ 0 0 0 11 0 0 0 0] [ 4 -2 -3 -3 1 0 0 0] [ 3 4 -2 -3 0 1 0 0] [ 3 3 4 -2 0 0 1 0] [ 2 3 3 4 0 0 0 1] * Dual modular bases are related to Regev's famous public-key encryption [R05]_ :: sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True) [ 0 0 0 0 0 0 0 0 0 11] [ 0 0 0 0 0 0 0 0 11 0] [ 0 0 0 0 0 0 0 11 0 0] [ 0 0 0 0 0 0 11 0 0 0] [ 0 0 0 0 0 11 0 0 0 0] [ 0 0 0 0 11 0 0 0 0 0] [ 0 0 0 1 -5 -2 -1 1 -3 5] [ 0 0 1 0 -3 4 1 4 -3 -2] [ 0 1 0 0 -4 5 -3 3 5 3] [ 1 0 0 0 -2 -1 4 2 5 4] * Relation of primal and dual bases :: sage: B_primal=sage.crypto.gen_lattice(m=10, q=11, seed=42) sage: B_dual=sage.crypto.gen_lattice(m=10, q=11, seed=42, dual=True) sage: B_dual_alt=transpose(11*B_primal.inverse()).change_ring(ZZ) sage: B_dual_alt.hermite_form() == B_dual.hermite_form() True TESTS: We are testing output format choices:: sage: sage.crypto.gen_lattice(m=10, q=11, seed=42) [11 0 0 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0 0 0] [ 0 0 0 11 0 0 0 0 0 0] [ 2 4 3 5 1 0 0 0 0 0] [ 1 -5 -4 2 0 1 0 0 0 0] [-4 3 -1 1 0 0 1 0 0 0] [-2 -3 -4 -1 0 0 0 1 0 0] [-5 -5 3 3 0 0 0 0 1 0] [-4 -3 2 -5 0 0 0 0 0 1] sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, ntl=True) [ [11 0 0 0 0 0 0 0 0 0] [0 11 0 0 0 0 0 0 0 0] [0 0 11 0 0 0 0 0 0 0] [0 0 0 11 0 0 0 0 0 0] [2 4 3 5 1 0 0 0 0 0] [1 -5 -4 2 0 1 0 0 0 0] [-4 3 -1 1 0 0 1 0 0 0] [-2 -3 -4 -1 0 0 0 1 0 0] [-5 -5 3 3 0 0 0 0 1 0] [-4 -3 2 -5 0 0 0 0 0 1] ] sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, lattice=True) Free module of degree 10 and rank 10 over Integer Ring User basis matrix: [ 0 0 1 1 0 -1 -1 -1 1 0] [-1 1 0 1 0 1 1 0 1 1] [-1 0 0 0 -1 1 1 -2 0 0] [-1 -1 0 1 1 0 0 1 1 -1] [ 1 0 -1 0 0 0 -2 -2 0 0] [ 2 -1 0 0 1 0 1 0 0 -1] [-1 1 -1 0 1 -1 1 0 -1 -2] [ 0 0 -1 3 0 0 0 -1 -1 -1] [ 0 -1 0 -1 2 0 -1 0 0 2] [ 0 1 1 0 1 1 -2 1 -1 -2] REFERENCES: .. [A96] Miklos Ajtai. Generating hard instances of lattice problems (extended abstract). STOC, pp. 99--108, ACM, 1996. .. [GM02] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points. Forum Mathematicum, 15:2, pp. 165--189, De Gruyter, 2003. .. [LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. ICALP, pp. 144--155, Springer, 2006. .. [R05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC, pp. 84--93, ACM, 2005. """ from sage.rings.finite_rings.integer_mod_ring \ import IntegerModRing from sage.matrix.constructor import matrix, \ identity_matrix, block_matrix from sage.matrix.matrix_space import MatrixSpace from sage.rings.integer_ring import IntegerRing if seed is not None: from sage.misc.randstate import set_random_seed set_random_seed(seed) if type == 'random': if n != 1: raise ValueError('random bases require n = 1') ZZ = IntegerRing() ZZ_q = IntegerModRing(q) A = identity_matrix(ZZ_q, n) if type == 'random' or type == 'modular': R = MatrixSpace(ZZ_q, m - n, n) A = A.stack(R.random_element()) elif type == 'ideal': if quotient is None: raise \ ValueError('ideal bases require a quotient polynomial') x = quotient.default_variable() if n != quotient.degree(x): raise \ ValueError('ideal bases require n = quotient.degree()') R = ZZ_q[x].quotient(quotient, x) for i in range(m // n): A = A.stack(R.random_element().matrix()) elif type == 'cyclotomic': from sage.rings.arith import euler_phi from sage.misc.functional import cyclotomic_polynomial # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n found = False for k in range(2 * n, n, -1): if euler_phi(k) == n: found = True break if not found: raise \ ValueError('cyclotomic bases require that n is an image of' + \ 'Euler\'s totient function') R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x') for i in range(m // n): A = A.stack(R.random_element().matrix()) # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2 def minrep(a): if abs(a - q) < abs(a): return a - q else: return a A_prime = A[n:m].lift().apply_map(minrep) if not dual: B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ], \ subdivide=False) else: B = block_matrix([[ZZ.one(), -A_prime.transpose()], [ZZ.zero(), \ ZZ(q)]], subdivide=False) for i in range(m // 2): B.swap_rows(i, m - i - 1) if ntl and lattice: raise ValueError("Cannot specify ntl=True and lattice=True " "at the same time") if ntl: return B._ntl_() elif lattice: from sage.modules.free_module_integer import IntegerLattice return IntegerLattice(B) else: return B
def run_tests(num_to_check=10, smaller_num_to_check = 10): import taut veering_isosigs = parse_data_file("Data/veering_census.txt") print("testing is_taut") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert taut.is_taut(tri, angle), sig print("testing isosig round trip") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) recovered_sig = taut.isosig_from_tri_angle(tri, angle) assert sig == recovered_sig, sig # we only test this round trip - the other round trip does not # make sense because tri->isosig is many to one. import transverse_taut print("testing is_transverse_taut") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert transverse_taut.is_transverse_taut(tri, angle), sig non_transverse_taut_isosigs = parse_data_file("Data/veering_non_transverse_taut_examples.txt") print("testing not is_transverse_taut") for sig in non_transverse_taut_isosigs: tri, angle = taut.isosig_to_tri_angle(sig) assert not transverse_taut.is_transverse_taut(tri, angle), sig import veering print("testing is_veering") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert veering.is_veering(tri, angle), sig # tri, angle = taut.isosig_to_tri_angle("cPcbbbdxm_10") # explore_mobius_surgery_graph(tri, angle, max_tetrahedra = 12) # # tests to see that it makes only veering triangulations as it goes import veering_dehn_surgery print("testing veering_dehn_surgery") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) for face_num in veering_dehn_surgery.get_mobius_strip_indices(tri): (tri_s, angle_s, face_num_s) = veering_dehn_surgery.veering_mobius_dehn_surgery(tri, angle, face_num) assert veering.is_veering(tri_s, angle_s), sig import veering_fan_excision print("testing veering_fan_excision") m003, _ = taut.isosig_to_tri_angle('cPcbbbdxm_10') m004, _ = taut.isosig_to_tri_angle('cPcbbbiht_12') for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) tet_types = veering.is_veering(tri, angle, return_type = "tet_types") if tet_types.count("toggle") == 2: excised_tri, _ = veering_fan_excision.excise_fans(tri, angle) assert ( excised_tri.isIsomorphicTo(m003) != None or excised_tri.isIsomorphicTo(m004) != None ), sig import pachner print("testing pachner with taut structure") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) face_num = random.randrange(tri.countTriangles()) result = pachner.twoThreeMove(tri, face_num, angle = angle, return_edge = True) if result != False: tri2, angle2, edge_num = result tri3, angle3 = pachner.threeTwoMove(tri2, edge_num, angle = angle2) assert taut.isosig_from_tri_angle(tri, angle) == taut.isosig_from_tri_angle(tri3, angle3), sig import branched_surface import regina print("testing branched_surface and pachner with branched surface") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) tri_original = regina.Triangulation3(tri) #copy branch = branched_surface.upper_branched_surface(tri, angle, return_lower = random.choice([True, False])) ### test branch isosig round trip sig_with_branch = branched_surface.isosig_from_tri_angle_branch(tri, angle, branch) tri2, angle2, branch2 = branched_surface.isosig_to_tri_angle_branch(sig_with_branch) assert (branch == branch2) and (angle == angle2), sig branch_original = branch[:] #copy face_num = random.randrange(tri.countTriangles()) out = pachner.twoThreeMove(tri, face_num, branch = branch, return_edge = True) if out != False: tri, possible_branches, edge_num = out tri, branch = pachner.threeTwoMove(tri, edge_num, branch = possible_branches[0]) all_isoms = tri.findAllIsomorphisms(tri_original) all_branches = [branched_surface.apply_isom_to_branched_surface(branch, isom) for isom in all_isoms] assert branch_original in all_branches, sig import flow_cycles import drill print("testing taut and branched drill + semiflows on drillings") for sig in random.sample(veering_isosigs, smaller_num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) branch = branched_surface.upper_branched_surface(tri, angle) ### also checks for veering and transverse taut found_loops = flow_cycles.find_flow_cycles(tri, branch) for loop in random.sample(found_loops, min(len(found_loops), 5)): ## drill along at most 5 loops tri, angle = taut.isosig_to_tri_angle(sig) branch = branched_surface.upper_branched_surface(tri, angle) tri_loop = flow_cycles.flow_cycle_to_triangle_loop(tri, branch, loop) if tri_loop != False: if not flow_cycles.tri_loop_is_boundary_parallel(tri_loop, tri): drill.drill(tri, tri_loop, angle = angle, branch = branch, sig = sig) assert branched_surface.has_non_sing_semiflow(tri, branch), sig print("all basic tests passed") try: import snappy import snappy_util snappy_working = True except: print("failed to import from snappy?") snappy_working = False if snappy_working: print("testing algebraic intersection") census = snappy.OrientableCuspedCensus() # not a set or list, so can't use random.sample for i in range(10): M = random.choice(census) n = M.num_cusps() peripheral_curves = M.gluing_equations()[-2*n:] for i in range(2*n): for j in range(i, 2*n): alg_int = snappy_util.algebraic_intersection(peripheral_curves[i], peripheral_curves[j]) if i % 2 == 0 and j == i + 1: assert alg_int == 1, M.name() else: assert alg_int == 0, M.name() if snappy_working: import veering_drill_midsurface_bdy print("testing veering drilling and filling") for sig in random.sample(veering_isosigs[:3000], num_to_check): T, per = veering_drill_midsurface_bdy.drill_midsurface_bdy(sig) M = snappy.Manifold(T.snapPea()) M.set_peripheral_curves("shortest") L = snappy_util.get_slopes_from_peripherals(M, per) M.dehn_fill(L) N = snappy.Manifold(sig.split("_")[0]) assert M.is_isometric_to(N), sig if snappy_working: print("all tests depending on snappy passed") # try: # from hashlib import md5 # from os import remove # import pyx # from boundary_triangulation import draw_triangulation_boundary_from_veering_isosig # pyx_working = True # except: # print("failed to import from pyx?") # pyx_working = False # ladders_style_sigs = { # "cPcbbbiht_12": "f34c1fdf65db9d02994752814803ae01", # "gLLAQbecdfffhhnkqnc_120012": "091c85b4f4877276bfd8a955b769b496", # "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "a0f15a8454f715f492c74ce1073a13a4", # } # geometric_style_sigs = { # "cPcbbbiht_12": "1e74d0b68160c4922e85a5adb20a0f1d", # "gLLAQbecdfffhhnkqnc_120012": "856a1fce74eb64f519bcda083303bd8f", # "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "33bd23b34c5d977a103fa50ffe63120a", # } # args = { # "draw_boundary_triangulation":True, # "draw_triangles_near_poles": False, # "ct_depth":-1, # "ct_epsilon":0.03, # "global_drawing_scale": 4, # "delta": 0.2, # "ladder_width": 10.0, # "ladder_height": 20.0, # "draw_labels": True, # } # shapes_data = read_from_pickle("Data/veering_shapes_up_to_ten_tetrahedra.pkl") # if pyx_working: # for sig in ladders_style_sigs: # print("testing boundary triangulation pictures, ladder style", sig) # args["tet_shapes"] = shapes_data[sig] # args["style"] = "ladders" # file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) # f = open(file_name, "rb") # file_hash = md5(f.read()) # assert file_hash.hexdigest() == ladders_style_sigs[sig] # f.close() # remove(file_name) # if pyx_working: # for sig in geometric_style_sigs: # print("testing boundary triangulation pictures, ladder style", sig) # args["tet_shapes"] = shapes_data[sig] # args["style"] = "geometric" # file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) # f = open(file_name, "rb") # file_hash = md5(f.read()) # assert file_hash.hexdigest() == geometric_style_sigs[sig] # f.close() # remove(file_name) # if pyx_working: # print("all tests depending on pyx passed") veering_polys = { "cPcbbbiht_12": [-4, -1, 1, 4], "eLMkbcddddedde_2100": [-2, -2, -2, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2], "gLLAQbecdfffhhnkqnc_120012": [-1, -1, -1, -1, 1, 1, 1, 1], "gLLPQcdfefefuoaaauo_022110": [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1], } # veering_polys = { ### old # "cPcbbbiht_12": "a^3 - 4*a^2 + 4*a - 1", # "eLMkbcddddedde_2100": "a^6*b - a^6 - 2*a^5*b - a^4*b^2 + a^5 + 2*a^4*b + a^3*b^2 - 2*a^3*b + a^3 + 2*a^2*b + a*b^2 - a^2 - 2*a*b - b^2 + b", # "gLLAQbecdfffhhnkqnc_120012": "a^7 + a^6 + a^5 + a^4 - a^3 - a^2 - a - 1", # "gLLPQcdfefefuoaaauo_022110": "a^12*b^3 - a^11*b^2 - a^10*b^3 - a^10*b^2 - a^7*b^3 - a^7*b^2 - a^6*b^3 + a^7*b + a^5*b^2 - a^6 - a^5*b - a^5 - a^2*b - a^2 - a*b + 1", # } taut_polys = { "cPcbbbiht_12": [-3, 1, 1], "eLMkbcddddedde_2100": [-1, -1, -1, 1, 1], "iLLAwQcccedfghhhlnhcqeesr_12001122": [], } # taut_polys = { ### old # "cPcbbbiht_12": "a^2 - 3*a + 1", # "eLMkbcddddedde_2100": "a^2*b - a^2 - a*b - b^2 + b", # "iLLAwQcccedfghhhlnhcqeesr_12001122": "0", # } torus_bundles = [ "cPcbbbiht_12", "eLMkbcdddhhqqa_1220", "gLMzQbcdefffhhqqqdl_122002", ] measured = [ "gLLAQbecdfffhhnkqnc_120012", "iLLALQcccedhgghhlnxkxrkaa_12001112", "iLLAwQcccedfghhhlnhcqeesr_12001122", ] empties = [ "fLAMcaccdeejsnaxk_20010", "gLALQbcbeeffhhwsras_211220", "hLALAkbcbeefgghhwsraqj_2112202", ] try: from sage.rings.integer_ring import ZZ sage_working = True except: print("failed to import from sage?") sage_working = False if sage_working: import taut_polytope print("testing is_layered") for sig in veering_isosigs[:17]: assert taut_polytope.is_layered(sig), sig for sig in veering_isosigs[17:21]: assert not taut_polytope.is_layered(sig), sig if sage_working: import fibered print("testing is_fibered") mflds = parse_data_file("Data/mflds_which_fiber.txt") mflds = [line.split("\t")[0:2] for line in mflds] for (name, kind) in random.sample(mflds, num_to_check): assert fibered.is_fibered(name) == (kind == "fibered"), name if sage_working: import veering_polynomial import taut_polynomial print("testing veering poly") for sig in veering_polys: p = veering_polynomial.veering_polynomial(sig) assert check_polynomial_coefficients(p, veering_polys[sig]), sig ### Nov 2021: sage 9.4 changed how smith normal form works, which changed our polynomials ### to equivalent but not equal polynomials. To avoid this kind of change breaking things ### in the future, we changed to comparing the list of coefficients. # assert p.__repr__() == veering_polys[sig] print("testing taut poly") for sig in taut_polys: p = taut_polynomial.taut_polynomial_via_tree(sig) assert check_polynomial_coefficients(p, taut_polys[sig]), sig # assert p.__repr__() == taut_polys[sig] print("testing divide") for sig in random.sample(veering_isosigs[:3000], num_to_check): p = veering_polynomial.veering_polynomial(sig) q = taut_polynomial.taut_polynomial_via_tree(sig) if q == 0: assert p == 0, sig else: assert q.divides(p), sig if sage_working: print("testing alex") for sig in random.sample(veering_isosigs[:3000], num_to_check): snap_sig = sig.split("_")[0] M = snappy.Manifold(snap_sig) if M.homology().betti_number() == 1: assert taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == M.alexander_polynomial(), sig if sage_working: # would be nice to automate this - need to fetch the angle # structure say via z_charge.py... print("testing is_torus_bundle") for sig in torus_bundles: assert taut_polytope.is_torus_bundle(sig), sig if sage_working: # ditto print("testing is_layered") for sig in torus_bundles: assert taut_polytope.is_layered(sig), sig print("testing measured") for sig in measured: assert taut_polytope.LMN_tri_angle(sig) == "M", sig print("testing empty") for sig in empties: assert taut_polytope.LMN_tri_angle(sig) == "N", sig if sage_working: # warning - this takes random amounts of time! print("testing hom dim") for sig in random.sample(veering_isosigs[:3000], 3): # magic number # dimension = zero if and only if nothing is carried. assert (taut_polytope.taut_cone_homological_dim(sig) == 0) == (taut_polytope.LMN_tri_angle(sig) == "N"), sig if sage_working: boundary_cycles = { ("eLMkbcddddedde_2100",(2,5,5,1,3,4,7,1)): "((-7, -7, 0, 0, 4, -3, 7, 0), (7, 7, 0, 0, -4, 3, -7, 0))", ("iLLLQPcbeegefhhhhhhahahha_01110221",(0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0)): "((0, 0, -1, 1, 1, 0, 1, 1, -1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1))", ("ivvPQQcfhghgfghfaaaaaaaaa_01122000",(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)): "((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0), (-2, 0, -3, 1, 2, -1, 0, 2, -1, 0, 3, 1, -2, 1, 0, -1), (0, -2, 1, -3, 0, -1, 2, 0, -1, 2, -1, 1, 0, 1, -2, 3))", } taut_polys_with_cycles = { ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): [-1, -1, -1, 1, 1], ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [1, 1, 2], ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-4, -1, -1, 1, 1], } # taut_polys_with_cycles = { # ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): "a^14 - a^8 - a^7 - a^6 + 1", # ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "a^2 + 2*a + 1", # ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - 4*a*b - b^2 + a", # } taut_polys_image = { ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):[-1, -1, -1, 1, 1], ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):[-2, -2, -1, -1, 1, 1], ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):[-4, -1, -1, 1, 1] } # taut_polys_image = { # ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):"a^16 - a^9 - a^8 - a^7 + 1", # ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):"a*b^2*c - 2*a*b*c - b^2*c - a^2 - 2*a*b + a", # ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):"a*b^2 - a^2 - 4*a*b - b^2 + a" # } alex_polys_with_cycles = { ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): [-2, -1, -1, -1, 1, 1, 1, 2], ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [-3, -1, 1, 3], ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-1, -1, 1, 1], } # alex_polys_with_cycles = { # ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): "a^15 - a^14 + a^9 - 2*a^8 + 2*a^7 - a^6 + a - 1", # ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "3*a^3 - a^2 + a - 3", # ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - b^2 + a", # } if sage_working: import taut_carried print("testing boundary cycles") for sig, surface in boundary_cycles: surface_list = list(surface) cycles = taut_carried.boundary_cycles_from_surface(sig, surface_list) cycles = tuple(tuple(cycle) for cycle in cycles) assert cycles.__repr__() == boundary_cycles[(sig, surface)], sig if sage_working: print("testing taut with cycles") for sig, cycles in taut_polys_with_cycles: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in) assert check_polynomial_coefficients(p, taut_polys_with_cycles[(sig, cycles)]), sig # assert p.__repr__() == taut_polys_with_cycles[(sig, cycles)] if sage_working: print("testing taut with images") for sig, cycles in taut_polys_image: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_image(sig, cycles_in) assert check_polynomial_coefficients(p, taut_polys_image[(sig, cycles)]), sig # assert p.__repr__() == taut_polys_image[(sig, cycles)] if sage_working: print("testing alex with cycles") for sig, cycles in alex_polys_with_cycles: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in, mode = "alexander") assert check_polynomial_coefficients(p, alex_polys_with_cycles[(sig, cycles)]), sig # assert p.__repr__() == alex_polys_with_cycles[(sig, cycles)] if sage_working: import edge_orientability import taut_euler_class print("testing euler and edge orientability") for sig in random.sample(veering_isosigs[:3000], 3): # Theorem: If (tri, angle) is edge orientable then e = 0. assert not ( edge_orientability.is_edge_orientable(sig) and (taut_euler_class.order_of_euler_class_wrapper(sig) == 2) ), sig if sage_working: # Theorem: If (tri, angle) is edge orientable then taut poly = alex poly. # taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == # taut_polynomial.taut_polynomial_via_tree(sig, mode = "taut") pass if sage_working: print("testing exotics") for sig in random.sample(veering_isosigs[:3000], 3): tri, angle = taut.isosig_to_tri_angle(sig) T = veering.veering_triangulation(tri, angle) is_eo = T.is_edge_orientable() for angle in T.exotic_angles(): assert taut_polytope.taut_cone_homological_dim(tri, angle) == 0, sig assert is_eo == transverse_taut.is_transverse_taut(tri, angle), sig ### test for drill_midsurface_bdy: drill then fill, check you get the same manifold if sage_working: from sage.combinat.words.word_generators import words from sage.modules.free_module_integer import IntegerLattice from sage.modules.free_module import VectorSpace from sage.matrix.constructor import Matrix import z_charge import z2_taut import regina ZZ2 = ZZ.quotient(ZZ(2)) sig_starts = ["b+-LR", "b++LR"] print("testing lattice for punc torus bundle") for i in range(3): for sig_start in sig_starts: sig = sig_start + str(words.RandomWord(8, 2, "LR")) # 8 is a magic number M = snappy.Manifold(sig) tri = regina.Triangulation3(M) t, A = z_charge.sol_and_kernel(M) B = z_charge.leading_trailing_deformations(M) C = z2_taut.cohomology_loops(tri) AA = IntegerLattice(A) BB = IntegerLattice(B) assert AA == BB.saturation(), sig dim = 3*M.num_tetrahedra() V = VectorSpace(ZZ2, dim) AA = V.subspace(A) BB = V.subspace(B) CM = Matrix(ZZ2, C) CC = CM.right_kernel() assert AA.intersection(CC) == BB , sig ## so l-t defms are the part of the kernel that doesn't flip over if sage_working: print("testing charges for punc torus bundle") for i in range(3): for sig_start in sig_starts: sig = sig_start + str(words.RandomWord(8, 2, "LR")) # 8 is a magic number M = snappy.Manifold(sig) assert z_charge.can_deal_with_reduced_angles(M), sig if sage_working: import carried_surface import mutation print("testing building carried surfaces and mutations") sigs_weights = [ ['iLLLPQccdgefhhghqrqqssvof_02221000', (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)], ['jLLAvQQcedehihiihiinasmkutn_011220000', (2, 0, 1, 0, 0, 0, 1, 2, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0)], ['jLLAvQQcedehihiihiinasmkutn_011220000', (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)], ['jLLLMPQcdgfhfhiiihshassspiq_122201101', (0, 0, 4, 0, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 0, 4, 0, 0)] ] strata = [ ((1, 2), [2, 2]), ((2, 4), [5, 5, 1, 1]), ((0, 3), [2, 0, 0]), ((6, 1), [22]) ] orders_of_veering_symmetry_groups = [4, 2, 2, 2] for i in range(len(sigs_weights)): tri, angle = taut.isosig_to_tri_angle(sigs_weights[i][0]) weights = sigs_weights[i][1] surface, edge_colours = carried_surface.build_surface(tri, angle, weights, return_edge_colours = True) assert strata[i] == carried_surface.stratum_from_weights_surface(weights, surface) veering_isoms = carried_surface.veering_symmetry_group(surface, edge_colours) assert len(veering_isoms) == orders_of_veering_symmetry_groups[i] isom = veering_isoms[1] mutation.mutate(tri, angle, weights, isom, quiet = True) if i == 0: assert tri.isoSig() == 'ivLLQQccfhfeghghwadiwadrv' #print('svof to wadrv passed') elif i == 1: assert tri.isoSig() == 'jvLLAQQdfghhfgiiijttmtltrcr' #print('smkutn to tltrcr passed') elif i == 2: assert tri.isoSig() == 'jLLMvQQcedehhiiihiikiwnmtxk' #print('smkutn to mtxk passed') elif i == 3: assert tri.isoSig() == 'jLLALMQcecdhggiiihqrwqwrafo' #print('spiq to rafo passed') if sage_working: print("all tests depending on sage passed")
def my_gen_lattice2(n=4, q=11, seed=None, quotient=None, dual=False, ntl=False, lattice=False, GuessStuff=True): """ This is a modification of the code for the gen_lattice function from Sage Randomness can be set either with ``seed``, or by using :func:`sage.misc.randstate.set_random_seed`. INPUT: - ``type`` -- one of the following strings - ``'cyclotomic'`` -- Special case of ideal. Allows for efficient processing proposed by [LM2006]_. - ``n`` -- Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`. For ideal lattices this is also the degree of the quotient polynomial. - ``m`` -- Lattice dimension, `L \subseteq Z^m`. - ``q`` -- Coefficient size, `q-Z^m \subseteq L`. - ``t`` -- BKZ Block Size - ``seed`` -- Randomness seed. - ``quotient`` -- For the type ideal, this determines the quotient polynomial. Ignored for all other types. - ``dual`` -- Set this flag if you want a basis for `q-dual(L)`, for example for Regev's LWE bases [Reg2005]_. - ``ntl`` -- Set this flag if you want the lattice basis in NTL readable format. - ``lattice`` -- Set this flag if you want a :class:`FreeModule_submodule_with_basis_integer` object instead of an integer matrix representing the basis. OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left, dual: lower_right) basis of row vectors for the lattice in question. EXAMPLES: Cyclotomic bases with n=2^k are SWIFFT bases:: sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42) [11 0 0 0 0 0 0 0] [ 0 11 0 0 0 0 0 0] [ 0 0 11 0 0 0 0 0] [ 0 0 0 11 0 0 0 0] [ 4 -2 -3 -3 1 0 0 0] [ 3 4 -2 -3 0 1 0 0] [ 3 3 4 -2 0 0 1 0] [ 2 3 3 4 0 0 0 1] Dual modular bases are related to Regev's famous public-key encryption [Reg2005]_:: sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True) [ 0 0 0 0 0 0 0 0 0 11] [ 0 0 0 0 0 0 0 0 11 0] [ 0 0 0 0 0 0 0 11 0 0] [ 0 0 0 0 0 0 11 0 0 0] [ 0 0 0 0 0 11 0 0 0 0] [ 0 0 0 0 11 0 0 0 0 0] [ 0 0 0 1 -5 -2 -1 1 -3 5] [ 0 0 1 0 -3 4 1 4 -3 -2] [ 0 1 0 0 -4 5 -3 3 5 3] [ 1 0 0 0 -2 -1 4 2 5 4] """ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.matrix.constructor import identity_matrix, block_matrix from sage.matrix.matrix_space import MatrixSpace from sage.rings.integer_ring import IntegerRing from sage.modules.free_module_integer import IntegerLattice if seed is not None: from sage.misc.randstate import set_random_seed set_random_seed(seed) m=n+1 ZZ = IntegerRing() ZZ_q = IntegerModRing(q) from sage.arith.all import euler_phi from sage.misc.functional import cyclotomic_polynomial # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n found = False for k in range(2*n,n,-1): if euler_phi(k) == n: found = True break if not found: raise ValueError("cyclotomic bases require that n " "is an image of Euler's totient function") R = ZZ_q['x'].quotient(cyclotomic_polynomial(2*n, 'x'), 'x') g=x**(n/2)+1 T=ZZ_q['x'].quotient(x**(n/2)+1) a_pol=R.random_element() s_pol=sample_noise(R) e_pol=sample_noise(R) s_pol2=T((s_pol)) e_pol2=T((e_pol)) print("s={0},e={1}".format(T(s_pol),T(e_pol))) Z_mat=e_pol2.matrix().augment(s_pol2.matrix()) Z_mattop=Z_mat[0:1].augment(matrix(1,1,[ZZ.one()*-1])) b_pol=(a_pol*s_pol+e_pol) print("s_pol={0}\ne_pol={1}".format((s_pol2).list(),(e_pol2).list())) # Does a linear mapping change the shortest vector size for the rest?/ a_pol=a_pol#*x_pol b_pol=b_pol#*x_pol a_pol2 = T(a_pol.list())# % S(g.list()) b_pol2 = T((b_pol).list())# % S(g.list()) # print("a={0}\nb={1}".format(a_pol2,b_pol2)) A=identity_matrix(ZZ_q,n/2) A=A.stack(a_pol2.matrix()) b_prime=b_pol2.matrix()[0:1] b_prime=b_prime - 11*A[8:9] A=A.stack(b_pol2.matrix()[0:1]) # print("X=\n{0}".format(X)) # A = A.stack(identity_matrix(ZZ_q, n/2)) print("A=\n{0}\n".format(A)) # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2 def minrepnegative(a): if abs(a-q) < abs(a): return (a-q)*-1 else: return a*-1 def minrep(a): if abs(a-q) < abs(a): return (a-q) else: return a A_prime = A[(n/2):(n+1)].lift().apply_map(minrep) # b_neg= A[(n):(n+1)].lift().apply_map(minrepnegative) Z_fixed=Z_mattop.lift().apply_map(minrep) print("Z_fixed={0}\n||Z_fixed||={1}".format(Z_fixed,float(Z_fixed[0].norm()))) print('Z_fixed*A={0}\n\n'.format(Z_fixed*A)) print("z_fixed[0].norm()={0}".format(float(Z_fixed[0].norm()))) # B=block_matrix([[ZZ(q),ZZ.zero()],[A_neg,ZZ.one()]], subdivide=False) # B = block_matrix([[ZZ.one(), -A_prime.transpose()], # [ZZ.zero(), ZZ(q)]], subdivide=False) B = block_matrix([[ZZ(q), ZZ.zero()], [-A_prime, ZZ.one()]], subdivide=False) # for i in range(m//2): # B.swap_rows(i,m-i-1) # print("{0}\n".format(A_neg)) # B=block_matrix([[ZZ(q), ZZ.zero(),ZZ.zero()],[ZZ.one(),A_neg,ZZ.zero() ],[ZZ.zero(),b_neg,ZZ.one()]], # subdivide=False) #print("B=\n{0}".format(B)) print("B*A=\n{0}\n\n".format(B*A)) #print("A=\n{0}\n".format(A)) def remap(x): return minrep((x*251)%251) BL=B.BKZ(block_size=n/2.) y=(BL.solve_left(Z_fixed))#.apply_map(remap)) # print("y*B={0}".format(y*B)) print("y:=B.solve_left(Z_fixed)={0}".format(y)) # BL=B.BKZ(block_size=n/2.) print(BL[0]) print("shortest norm={0}".format(float(BL[0].norm()))) # L = IntegerLattice(B) # p # v=L.shortest_vector() # print("L.shortest_vector={0}, norm={1}".format(v,float(v.norm()))) if ntl and lattice: raise ValueError("Cannot specify ntl=True and lattice=True ") if ntl: return B._ntl_() elif lattice: from sage.modules.free_module_integer import IntegerLattice return IntegerLattice(B) else: return B