コード例 #1
0
    def J_inv_ZZ(self):
        r"""
        Return the rational Fourier expansion of ``J_inv``,
        where ``d`` is replaced by ``1``.

        This is the main function used to determine all Fourier expansions!

        EXAMPLES::

            sage: MFSeriesConstructor(prec=3).J_inv_ZZ()
            q^-1 + 31/72 + 1823/27648*q + O(q^2)
            sage: MFSeriesConstructor(group=5, prec=3, fix_d=True).J_inv_ZZ()
            q^-1 + 79/200 + 42877/640000*q + O(q^2)
            sage: MFSeriesConstructor(group=5, prec=3, fix_d=True).J_inv_ZZ().parent()
            Laurent Series Ring in q over Rational Field
        """

        F1       = lambda a,b:   self._ZZseries_ring(\
                       [ ZZ(0) ] + [\
                           rising_factorial(a,k) * rising_factorial(b,k) / (ZZ(k).factorial())**2 * sum([\
                               ZZ(1)/(a+j)+ZZ(1)/(b+j)-ZZ(2)/ZZ(1+j) for j in range(ZZ(0),ZZ(k))\
                           ]) for k in range(ZZ(1),ZZ(self._prec+1))
                       ], ZZ(self._prec+1)\
                   )
        F        = lambda a,b,c: self._ZZseries_ring([\
                       rising_factorial(a,k) * rising_factorial(b,k) / rising_factorial(c,k) / (ZZ(k).factorial())\
                       for k in range(ZZ(0),ZZ(self._prec+1))\
                   ], ZZ(self._prec+1))
        a        = self._group.alpha()
        b        = self._group.beta()
        Phi      = F1(a,b) / F(a,b,ZZ(1))
        q        = self._ZZseries_ring.gen()
        J_inv_ZZ = ZZ(1) / ((q*Phi.exp()).reversion())
        return J_inv_ZZ
コード例 #2
0
    def J_inv_ZZ(self):
        r"""
        Return the rational Fourier expansion of ``J_inv``,
        where the parameter ``d`` is replaced by ``1``.

        This is the main function used to determine all Fourier expansions!

        .. NOTE:

        The Fourier expansion of ``J_inv`` for ``d!=1``
        is given by ``J_inv_ZZ(q/d)``.

        .. TODO:

          The functions that are used in this implementation are
          products of hypergeometric series with other, elementary,
          functions.  Implement them and clean up this representation.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import MFSeriesConstructor
            sage: MFSeriesConstructor(prec=3).J_inv_ZZ()
            q^-1 + 31/72 + 1823/27648*q + O(q^2)
            sage: MFSeriesConstructor(group=5, prec=3).J_inv_ZZ()
            q^-1 + 79/200 + 42877/640000*q + O(q^2)
            sage: MFSeriesConstructor(group=5, prec=3).J_inv_ZZ().parent()
            Laurent Series Ring in q over Rational Field

            sage: MFSeriesConstructor(group=infinity, prec=3).J_inv_ZZ()
            q^-1 + 3/8 + 69/1024*q + O(q^2)
        """

        F1 = lambda a, b: self._series_ring([ZZ(0)] + [
            rising_factorial(a, k) * rising_factorial(b, k) /
            (ZZ(k).factorial())**2 * sum(
                ZZ(1) / (a + j) + ZZ(1) / (b + j) - ZZ(2) / ZZ(1 + j)
                for j in range(ZZ(0), ZZ(k)))
            for k in range(ZZ(1), ZZ(self._prec + 1))
        ], ZZ(self._prec + 1))

        F = lambda a, b, c: self._series_ring([
            rising_factorial(a, k) * rising_factorial(b, k) / rising_factorial(
                c, k) / ZZ(k).factorial()
            for k in range(ZZ(0), ZZ(self._prec + 1))
        ], ZZ(self._prec + 1))
        a = self._group.alpha()
        b = self._group.beta()
        Phi = F1(a, b) / F(a, b, ZZ(1))
        q = self._series_ring.gen()

        # the current implementation of power series reversion is slow
        # J_inv_ZZ = ZZ(1) / ((q*Phi.exp()).reverse())

        temp_f = (q * Phi.exp()).polynomial()
        new_f = temp_f.revert_series(temp_f.degree() + 1)
        J_inv_ZZ = ZZ(1) / (new_f + O(q**(temp_f.degree() + 1)))

        return J_inv_ZZ
コード例 #3
0
    def J_inv_ZZ(self):
        r"""
        Return the rational Fourier expansion of ``J_inv``,
        where the parameter ``d`` is replaced by ``1``.

        This is the main function used to determine all Fourier expansions!

        .. NOTE:

        The Fourier expansion of ``J_inv`` for ``d!=1``
        is given by ``J_inv_ZZ(q/d)``.

        .. TODO:

          The functions that are used in this implementation are
          products of hypergeometric series with other, elementary,
          functions.  Implement them and clean up this representation.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import MFSeriesConstructor
            sage: MFSeriesConstructor(prec=3).J_inv_ZZ()
            q^-1 + 31/72 + 1823/27648*q + O(q^2)
            sage: MFSeriesConstructor(group=5, prec=3).J_inv_ZZ()
            q^-1 + 79/200 + 42877/640000*q + O(q^2)
            sage: MFSeriesConstructor(group=5, prec=3).J_inv_ZZ().parent()
            Laurent Series Ring in q over Rational Field

            sage: MFSeriesConstructor(group=infinity, prec=3).J_inv_ZZ()
            q^-1 + 3/8 + 69/1024*q + O(q^2)
        """

        F1       = lambda a,b:   self._series_ring(
                       [ ZZ(0) ]
                       + [
                           rising_factorial(a,k) * rising_factorial(b,k) / (ZZ(k).factorial())**2
                           * sum(ZZ(1)/(a+j) + ZZ(1)/(b+j) - ZZ(2)/ZZ(1+j)
                                  for j in range(ZZ(0),ZZ(k))
                             )
                           for k in range(ZZ(1), ZZ(self._prec+1))
                       ],
                       ZZ(self._prec+1)
                   )

        F        = lambda a,b,c: self._series_ring(
                       [
                         rising_factorial(a,k) * rising_factorial(b,k) / rising_factorial(c,k) / ZZ(k).factorial()
                         for k in range(ZZ(0), ZZ(self._prec+1))
                       ],
                       ZZ(self._prec+1)
                   )
        a        = self._group.alpha()
        b        = self._group.beta()
        Phi      = F1(a,b) / F(a,b,ZZ(1))
        q        = self._series_ring.gen()

        # the current implementation of power series reversion is slow
        # J_inv_ZZ = ZZ(1) / ((q*Phi.exp()).reverse())

        temp_f   = (q*Phi.exp()).polynomial()
        new_f    = temp_f.revert_series(temp_f.degree()+1)
        J_inv_ZZ = ZZ(1) / (new_f + O(q**(temp_f.degree()+1)))

        return J_inv_ZZ