コード例 #1
0
    def _coerce_map_from_(self, R):
        r"""
        Return a coerce map from ``R`` to this field.

        EXAMPLES::

            sage: R.<t> = GF(5)[]
            sage: K = R.fraction_field()
            sage: L = K.function_field()
            sage: f = K.coerce_map_from(L); f # indirect doctest
            Isomorphism:
              From: Rational function field in t over Finite Field of size 5
              To:   Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
            sage: f(~L.gen())
            1/t

        """
        from sage.rings.function_field.function_field import is_RationalFunctionField
        if is_RationalFunctionField(R) and self.variable_name(
        ) == R.variable_name() and self.base_ring() is R.constant_base_field():
            from sage.categories.all import Hom
            parent = Hom(R, self)
            from sage.rings.function_field.maps import FunctionFieldToFractionField
            return parent.__make_element_class__(FunctionFieldToFractionField)(
                parent)

        return super(FractionField_1poly_field, self)._coerce_map_from_(R)
コード例 #2
0
    def _coerce_map_from_(self, R):
        r"""
        Return a coerce map from ``R`` to this field.

        EXAMPLES::

            sage: R.<t> = GF(5)[]
            sage: K = R.fraction_field()
            sage: L = K.function_field()
            sage: f = K.coerce_map_from(L); f # indirect doctest
            Isomorphism:
              From: Rational function field in t over Finite Field of size 5
              To:   Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
            sage: f(~L.gen())
            1/t

        """
        from sage.rings.function_field.function_field import is_RationalFunctionField
        if is_RationalFunctionField(R) and self.variable_name() == R.variable_name() and self.base_ring() is R.constant_base_field():
            from sage.categories.all import Hom
            parent = Hom(R, self)
            from sage.rings.function_field.maps import FunctionFieldToFractionField
            return parent.__make_element_class__(FunctionFieldToFractionField)(parent)

        return super(FractionField_1poly_field, self)._coerce_map_from_(R)
コード例 #3
0
def can_convert_to_singular(R):
    """
    Returns True if this ring's base field or ring can be
    represented in Singular, and the polynomial ring has at
    least one generator.  If this is True then this polynomial
    ring can be represented in Singular.

    The following base rings are supported: finite fields, rationals, number
    fields, and real and complex fields.

    EXAMPLES::

        sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
        True
        sage: can_convert_to_singular(PolynomialRing(ZZ, names=['x']))
        True

        sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
        False

    TESTS:

    Avoid non absolute number fields (see :trac:`23535`)::

        sage: K.<a,b> = NumberField([x^2-2,x^2-5])
        sage: can_convert_to_singular(K['s,t'])
        False
    """
    if R.ngens() == 0:
        return False

    base_ring = R.base_ring()
    if (base_ring is ZZ
            or sage.rings.finite_rings.finite_field_constructor.is_FiniteField(
                base_ring) or is_RationalField(base_ring)
            or is_IntegerModRing(base_ring) or is_RealField(base_ring)
            or is_ComplexField(base_ring) or is_RealDoubleField(base_ring)
            or is_ComplexDoubleField(base_ring)):
        return True
    elif base_ring.is_prime_field():
        return base_ring.characteristic() <= 2147483647
    elif number_field.number_field_base.is_NumberField(base_ring):
        return base_ring.is_absolute()
    elif sage.rings.fraction_field.is_FractionField(base_ring):
        B = base_ring.base_ring()
        return B.is_prime_field() or B is ZZ or is_FiniteField(B)
    elif is_RationalFunctionField(base_ring):
        return base_ring.constant_field().is_prime_field()
    else:
        return False
コード例 #4
0
def can_convert_to_singular(R):
    """
    Returns True if this ring's base field or ring can be
    represented in Singular, and the polynomial ring has at
    least one generator.  If this is True then this polynomial
    ring can be represented in Singular.

    The following base rings are supported: finite fields, rationals, number
    fields, and real and complex fields.

    EXAMPLES::

        sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
        True

        sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
        False

    TESTS:

    Avoid non absolute number fields (see :trac:`23535`)::

        sage: K.<a,b> = NumberField([x^2-2,x^2-5])
        sage: can_convert_to_singular(K['s,t'])
        False
    """
    if R.ngens() == 0:
        return False;

    base_ring = R.base_ring()
    if (base_ring is ZZ
        or sage.rings.finite_rings.finite_field_constructor.is_FiniteField(base_ring)
        or is_RationalField(base_ring)
        or is_IntegerModRing(base_ring)
        or is_RealField(base_ring)
        or is_ComplexField(base_ring)
        or is_RealDoubleField(base_ring)
        or is_ComplexDoubleField(base_ring)):
        return True
    elif base_ring.is_prime_field():
        return base_ring.characteristic() <= 2147483647
    elif number_field.number_field_base.is_NumberField(base_ring):
        return base_ring.is_absolute()
    elif sage.rings.fraction_field.is_FractionField(base_ring):
        B = base_ring.base_ring()
        return B.is_prime_field() or B is ZZ or is_FiniteField(B)
    elif is_RationalFunctionField(base_ring):
        return base_ring.constant_field().is_prime_field()
    else:
        return False
コード例 #5
0
def can_convert_to_singular(R):
    """
    Returns True if this ring's base field or ring can be
    represented in Singular, and the polynomial ring has at
    least one generator.  If this is True then this polynomial
    ring can be represented in Singular.

    The following base rings are supported: finite fields, rationals, number
    fields, and real and complex fields.

    EXAMPLES::

        sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
        True

        sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
        False

    """
    if R.ngens() == 0:
        return False

    base_ring = R.base_ring()
    return (
        sage.rings.finite_rings.constructor.is_FiniteField(base_ring)
        or is_RationalField(base_ring)
        or (base_ring.is_prime_field()
            and base_ring.characteristic() <= 2147483647)
        or is_RealField(base_ring) or is_ComplexField(base_ring)
        or is_RealDoubleField(base_ring) or is_ComplexDoubleField(base_ring)
        or number_field.number_field_base.is_NumberField(base_ring) or
        (sage.rings.fraction_field.is_FractionField(base_ring) and
         (base_ring.base_ring().is_prime_field() or base_ring.base_ring() is ZZ
          or is_FiniteField(base_ring.base_ring()))) or base_ring is ZZ
        or is_IntegerModRing(base_ring)
        or (is_RationalFunctionField(base_ring)
            and base_ring.constant_field().is_prime_field()))
コード例 #6
0
def can_convert_to_singular(R):
    """
    Returns True if this ring's base field or ring can be
    represented in Singular, and the polynomial ring has at
    least one generator.  If this is True then this polynomial
    ring can be represented in Singular.

    The following base rings are supported: finite fields, rationals, number
    fields, and real and complex fields.

    EXAMPLES::

        sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
        True

        sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
        False

    """
    if R.ngens() == 0:
        return False;

    base_ring = R.base_ring()
    return ( sage.rings.finite_rings.constructor.is_FiniteField(base_ring)
             or is_RationalField(base_ring)
             or (base_ring.is_prime_field() and base_ring.characteristic() <= 2147483647)
             or is_RealField(base_ring)
             or is_ComplexField(base_ring)
             or is_RealDoubleField(base_ring)
             or is_ComplexDoubleField(base_ring)
             or number_field.number_field_base.is_NumberField(base_ring)
             or ( sage.rings.fraction_field.is_FractionField(base_ring) and ( base_ring.base_ring().is_prime_field() or base_ring.base_ring() is ZZ or is_FiniteField(base_ring.base_ring()) ) )
             or base_ring is ZZ
             or is_IntegerModRing(base_ring)
             or (is_RationalFunctionField(base_ring) and base_ring.constant_field().is_prime_field()) )