def _element_constructor_(self, x, e=1): r"""Construct a Puiseux series from `x`. INPUT: - ``x`` -- an object that can be converted into a Puiseux series in (x-a) - ``a`` -- (default: 0) the series is in powers of (var - a) - ``e`` -- (default: 1) the ramification index of the series """ P = parent(x) # 1. x is a Puiseux series belonging to this ring if isinstance(x, self.element_class) and P is self: return x # 2. x is a Puiseux series but not an element of this ring. the laurent # part should be coercible to the laurent series ring of self elif isinstance(x, self.element_class): l = self.laurent_series_ring()(x.laurent_part) e = x.ramification_index # 3. x is a member of the base ring then convert x to a laurent series # and set the ramificaiton index of the Puiseux series to 1. elif P is self.base_ring(): l = self.laurent_series_ring()(x) e = 1 # 4. x is a Laurent or power series with the same base ring elif ((is_LaurentSeries(x) or is_PowerSeries(x)) and P is self.base_ring()): l = self.laurent_series_ring()(x) # 5. everything else: try to coerce to laurent series ring else: l = self.laurent_series_ring()(x) e = 1 return self.element_class(self, l, e=e)
def hecke_operator_on_qexp(f, n, k, eps = None, prec=None, check=True, _return_list=False): r""" Given the `q`-expansion `f` of a modular form with character `\varepsilon`, this function computes the image of `f` under the Hecke operator `T_{n,k}` of weight `k`. EXAMPLES:: sage: M = ModularForms(1,12) sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + O(q^5) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12, prec=7) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + O(q^14) sage: M.prec(20) 20 sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + 401856*q^14 + 1217160*q^15 + 987136*q^16 - 6905934*q^17 + 2727432*q^18 + 10661420*q^19 - 7109760*q^20 + O(q^21) sage: (hecke_operator_on_qexp(M.basis()[0], 1, 12)*252).add_bigoh(7) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 6, 12) -6048*q + 145152*q^2 - 1524096*q^3 + O(q^4) An example on a formal power series:: sage: R.<q> = QQ[[]] sage: f = q + q^2 + q^3 + q^7 + O(q^8) sage: hecke_operator_on_qexp(f, 3, 12) q + O(q^3) sage: hecke_operator_on_qexp(delta_qexp(24), 3, 12).prec() 8 sage: hecke_operator_on_qexp(delta_qexp(25), 3, 12).prec() 9 An example of computing `T_{p,k}` in characteristic `p`:: sage: p = 199 sage: fp = delta_qexp(prec=p^2+1, K=GF(p)) sage: tfp = hecke_operator_on_qexp(fp, p, 12) sage: tfp == fp[p] * fp True sage: tf = hecke_operator_on_qexp(delta_qexp(prec=p^2+1), p, 12).change_ring(GF(p)) sage: tfp == tf True """ if eps is None: # Need to have base_ring=ZZ to work over finite fields, since # ZZ can coerce to GF(p), but QQ can't. eps = DirichletGroup(1, base_ring=ZZ)[0] if check: if not (is_PowerSeries(f) or is_ModularFormElement(f)): raise TypeError("f (=%s) must be a power series or modular form"%f) if not is_DirichletCharacter(eps): raise TypeError("eps (=%s) must be a Dirichlet character"%eps) k = Integer(k) n = Integer(n) v = [] if prec is None: if is_ModularFormElement(f): # always want at least three coefficients, but not too many, unless # requested pr = max(f.prec(), f.parent().prec(), (n+1)*3) pr = min(pr, 100*(n+1)) prec = pr // n + 1 else: prec = (f.prec() / ZZ(n)).ceil() if prec == Infinity: prec = f.parent().default_prec() // n + 1 if f.prec() < prec: f._compute_q_expansion(prec) p = Integer(f.base_ring().characteristic()) if k != 1 and p.is_prime() and n.is_power_of(p): # if computing T_{p^a} in characteristic p, use the simpler (and faster) # formula v = [f[m*n] for m in range(prec)] else: l = k-1 for m in range(prec): am = sum([eps(d) * d**l * f[m*n//(d*d)] for \ d in divisors(gcd(n, m)) if (m*n) % (d*d) == 0]) v.append(am) if _return_list: return v if is_ModularFormElement(f): R = f.parent()._q_expansion_ring() else: R = f.parent() return R(v, prec)
def hecke_operator_on_basis(B, n, k, eps=None, already_echelonized = False): r""" Given a basis `B` of `q`-expansions for a space of modular forms with character `\varepsilon` to precision at least `\#B\cdot n+1`, this function computes the matrix of `T_n` relative to `B`. .. note:: If the elements of B are not known to sufficient precision, this function will report that the vectors are linearly dependent (since they are to the specified precision). INPUT: - ``B`` - list of q-expansions - ``n`` - an integer >= 1 - ``k`` - an integer - ``eps`` - Dirichlet character - ``already_echelonized`` -- bool (default: False); if True, use that the basis is already in Echelon form, which saves a lot of time. EXAMPLES:: sage: sage.modular.modform.constructor.ModularForms_clear_cache() sage: ModularForms(1,12).q_expansion_basis() [ q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6), 1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + 3199218815520/691*q^5 + O(q^6) ] sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(), 3, 12) Traceback (most recent call last): ... ValueError: The given basis vectors must be linearly independent. sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(30), 3, 12) [ 252 0] [ 0 177148] TESTS: This shows that the problem with finite fields reported at :trac:`8281` is solved:: sage: bas_mod5 = [f.change_ring(GF(5)) for f in victor_miller_basis(12, 20)] sage: hecke_operator_on_basis(bas_mod5, 2, 12) [4 0] [0 1] This shows that empty input is handled sensibly (:trac:`12202`):: sage: x = hecke_operator_on_basis([], 3, 12); x [] sage: x.parent() Full MatrixSpace of 0 by 0 dense matrices over Cyclotomic Field of order 1 and degree 1 sage: y = hecke_operator_on_basis([], 3, 12, eps=DirichletGroup(13).0^2); y [] sage: y.parent() Full MatrixSpace of 0 by 0 dense matrices over Cyclotomic Field of order 12 and degree 4 """ if not isinstance(B, (list, tuple)): raise TypeError("B (=%s) must be a list or tuple"%B) if len(B) == 0: if eps is None: R = CyclotomicField(1) else: R = eps.base_ring() return MatrixSpace(R, 0)(0) f = B[0] R = f.base_ring() if eps is None: eps = DirichletGroup(1, R)[0] all_powerseries = True for x in B: if not is_PowerSeries(x): all_powerseries = False if not all_powerseries: raise TypeError("each element of B must be a power series") n = Integer(n) k = Integer(k) prec = (f.prec()-1)//n A = R**prec V = A.span_of_basis([g.padded_list(prec) for g in B], already_echelonized = already_echelonized) return _hecke_operator_on_basis(B, V, n, k, eps)
def hecke_operator_on_qexp(f, n, k, eps=None, prec=None, check=True, _return_list=False): r""" Given the `q`-expansion `f` of a modular form with character `\varepsilon`, this function computes the image of `f` under the Hecke operator `T_{n,k}` of weight `k`. EXAMPLES:: sage: M = ModularForms(1,12) sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + O(q^5) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12, prec=7) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + O(q^14) sage: M.prec(20) 20 sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + 401856*q^14 + 1217160*q^15 + 987136*q^16 - 6905934*q^17 + 2727432*q^18 + 10661420*q^19 - 7109760*q^20 + O(q^21) sage: (hecke_operator_on_qexp(M.basis()[0], 1, 12)*252).add_bigoh(7) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 6, 12) -6048*q + 145152*q^2 - 1524096*q^3 + O(q^4) An example on a formal power series:: sage: R.<q> = QQ[[]] sage: f = q + q^2 + q^3 + q^7 + O(q^8) sage: hecke_operator_on_qexp(f, 3, 12) q + O(q^3) sage: hecke_operator_on_qexp(delta_qexp(24), 3, 12).prec() 8 sage: hecke_operator_on_qexp(delta_qexp(25), 3, 12).prec() 9 An example of computing `T_{p,k}` in characteristic `p`:: sage: p = 199 sage: fp = delta_qexp(prec=p^2+1, K=GF(p)) sage: tfp = hecke_operator_on_qexp(fp, p, 12) sage: tfp == fp[p] * fp True sage: tf = hecke_operator_on_qexp(delta_qexp(prec=p^2+1), p, 12).change_ring(GF(p)) sage: tfp == tf True """ if eps is None: # Need to have base_ring=ZZ to work over finite fields, since # ZZ can coerce to GF(p), but QQ can't. eps = DirichletGroup(1, base_ring=ZZ)[0] if check: if not (is_PowerSeries(f) or is_ModularFormElement(f)): raise TypeError("f (=%s) must be a power series or modular form" % f) if not is_DirichletCharacter(eps): raise TypeError("eps (=%s) must be a Dirichlet character" % eps) k = Integer(k) n = Integer(n) v = [] if prec is None: if is_ModularFormElement(f): # always want at least three coefficients, but not too many, unless # requested pr = max(f.prec(), f.parent().prec(), (n + 1) * 3) pr = min(pr, 100 * (n + 1)) prec = pr // n + 1 else: prec = (f.prec() / ZZ(n)).ceil() if prec == Infinity: prec = f.parent().default_prec() // n + 1 if f.prec() < prec: f._compute_q_expansion(prec) p = Integer(f.base_ring().characteristic()) if k != 1 and p.is_prime() and n.is_power_of(p): # if computing T_{p^a} in characteristic p, use the simpler (and faster) # formula v = [f[m * n] for m in range(prec)] else: l = k - 1 for m in range(prec): am = sum([eps(d) * d**l * f[m*n//(d*d)] for \ d in divisors(gcd(n, m)) if (m*n) % (d*d) == 0]) v.append(am) if _return_list: return v if is_ModularFormElement(f): R = f.parent()._q_expansion_ring() else: R = f.parent() return R(v, prec)
def hecke_operator_on_basis(B, n, k, eps=None, already_echelonized=False): r""" Given a basis `B` of `q`-expansions for a space of modular forms with character `\varepsilon` to precision at least `\#B\cdot n+1`, this function computes the matrix of `T_n` relative to `B`. .. note:: If the elements of B are not known to sufficient precision, this function will report that the vectors are linearly dependent (since they are to the specified precision). INPUT: - ``B`` - list of q-expansions - ``n`` - an integer >= 1 - ``k`` - an integer - ``eps`` - Dirichlet character - ``already_echelonized`` -- bool (default: False); if True, use that the basis is already in Echelon form, which saves a lot of time. EXAMPLES:: sage: sage.modular.modform.constructor.ModularForms_clear_cache() sage: ModularForms(1,12).q_expansion_basis() [ q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6), 1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + 3199218815520/691*q^5 + O(q^6) ] sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(), 3, 12) Traceback (most recent call last): ... ValueError: The given basis vectors must be linearly independent. sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(30), 3, 12) [ 252 0] [ 0 177148] TESTS: This shows that the problem with finite fields reported at trac #8281 is solved:: sage: bas_mod5 = [f.change_ring(GF(5)) for f in victor_miller_basis(12, 20)] sage: hecke_operator_on_basis(bas_mod5, 2, 12) [4 0] [0 1] This shows that empty input is handled sensibly (trac #12202):: sage: x = hecke_operator_on_basis([], 3, 12); x [] sage: x.parent() Full MatrixSpace of 0 by 0 dense matrices over Cyclotomic Field of order 1 and degree 1 sage: y = hecke_operator_on_basis([], 3, 12, eps=DirichletGroup(13).0^2); y [] sage: y.parent() Full MatrixSpace of 0 by 0 dense matrices over Cyclotomic Field of order 12 and degree 4 """ if not isinstance(B, (list, tuple)): raise TypeError("B (=%s) must be a list or tuple" % B) if len(B) == 0: if eps is None: R = CyclotomicField(1) else: R = eps.base_ring() return MatrixSpace(R, 0)(0) f = B[0] R = f.base_ring() if eps is None: eps = DirichletGroup(1, R)[0] all_powerseries = True for x in B: if not is_PowerSeries(x): all_powerseries = False if not all_powerseries: raise TypeError("each element of B must be a power series") n = Integer(n) k = Integer(k) prec = (f.prec() - 1) // n A = R**prec V = A.span_of_basis([g.padded_list(prec) for g in B], already_echelonized=already_echelonized) return _hecke_operator_on_basis(B, V, n, k, eps)