def WeierstrassMap_P1xP1(polynomial, variables=None): r""" Map an anticanonical hypersurface in `\mathbb{P}^1 \times \mathbb{P}^1` into Weierstrass form. Input/output is the same as :func:`WeierstrassMap`, except that the input polynomial must be a standard anticanonical hypersurface in the toric surface `\mathbb{P}^1 \times \mathbb{P}^1`: EXAMPLES:: sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P1xP1 sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P1xP1 sage: R.<x0,x1,y0,y1,a>= QQ[] sage: biquadric = ( x0^2*y0^2 + x1^2*y0^2 + x0^2*y1^2 + x1^2*y1^2 + ....: a * x0*x1*y0*y1*5 ) sage: f, g = WeierstrassForm_P1xP1(biquadric, [x0, x1, y0, y1]); (f,g) (-625/48*a^4 + 25/3*a^2 - 16/3, 15625/864*a^6 - 625/36*a^4 - 100/9*a^2 + 128/27) sage: X, Y, Z = WeierstrassMap_P1xP1(biquadric, [x0, x1, y0, y1]) sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(biquadric)) 0 sage: R = PolynomialRing(QQ, 'x,y,s,t', order='lex') sage: R.inject_variables() Defining x, y, s, t sage: equation = ( s^2*(x^2+2*x*y+3*y^2) + s*t*(4*x^2+5*x*y+6*y^2) ....: + t^2*(7*x^2+8*x*y+9*y^2) ) sage: X, Y, Z = WeierstrassMap_P1xP1(equation, [x,y,s,t]) sage: f, g = WeierstrassForm_P1xP1(equation, variables=[x,y,s,t]) sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation)) 0 sage: R = PolynomialRing(QQ, 'x,s', order='lex') sage: R.inject_variables() Defining x, s sage: equation = s^2*(x^2+2*x+3) + s*(4*x^2+5*x+6) + (7*x^2+8*x+9) sage: X, Y, Z = WeierstrassMap_P1xP1(equation) sage: f, g = WeierstrassForm_P1xP1(equation) sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation)) 0 """ x,y,s,t = _check_polynomial_P1xP1(polynomial, variables) a00 = polynomial.coefficient({s:2}) V = polynomial.coefficient({s:1}) U = - _partial_discriminant(polynomial, s, t) / 4 Q = invariant_theory.binary_quartic(U, x, y) g = Q.g_covariant() h = Q.h_covariant() if t is None: t = 1 return ( 4*g*t**2, 4*h*t**3, (a00*s+V/2) )
def WeierstrassMap_P1xP1(polynomial, variables=None): r""" Map an anticanonical hypersurface in `\mathbb{P}^1 \times \mathbb{P}^1` into Weierstrass form. Input/output is the same as :func:`WeierstrassMap`, except that the input polynomial must be a standard anticanonical hypersurface in the toric surface `\mathbb{P}^1 \times \mathbb{P}^1`: EXAMPLES:: sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P1xP1 sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P1xP1 sage: R.<x0,x1,y0,y1,a>= QQ[] sage: biquadric = ( x0^2*y0^2 + x1^2*y0^2 + x0^2*y1^2 + x1^2*y1^2 + ....: a * x0*x1*y0*y1*5 ) sage: f, g = WeierstrassForm_P1xP1(biquadric, [x0, x1, y0, y1]); (f,g) (-625/48*a^4 + 25/3*a^2 - 16/3, 15625/864*a^6 - 625/36*a^4 - 100/9*a^2 + 128/27) sage: X, Y, Z = WeierstrassMap_P1xP1(biquadric, [x0, x1, y0, y1]) sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(biquadric)) 0 sage: R = PolynomialRing(QQ, 'x,y,s,t', order='lex') sage: R.inject_variables() Defining x, y, s, t sage: equation = ( s^2*(x^2+2*x*y+3*y^2) + s*t*(4*x^2+5*x*y+6*y^2) ....: + t^2*(7*x^2+8*x*y+9*y^2) ) sage: X, Y, Z = WeierstrassMap_P1xP1(equation, [x,y,s,t]) sage: f, g = WeierstrassForm_P1xP1(equation, variables=[x,y,s,t]) sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation)) 0 sage: R = PolynomialRing(QQ, 'x,s', order='lex') sage: R.inject_variables() Defining x, s sage: equation = s^2*(x^2+2*x+3) + s*(4*x^2+5*x+6) + (7*x^2+8*x+9) sage: X, Y, Z = WeierstrassMap_P1xP1(equation) sage: f, g = WeierstrassForm_P1xP1(equation) sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation)) 0 """ x, y, s, t = _check_polynomial_P1xP1(polynomial, variables) a00 = polynomial.coefficient({s: 2}) V = polynomial.coefficient({s: 1}) U = -_partial_discriminant(polynomial, s, t) / 4 Q = invariant_theory.binary_quartic(U, x, y) g = Q.g_covariant() h = Q.h_covariant() if t is None: t = 1 return (4 * g * t**2, 4 * h * t**3, (a00 * s + V / 2))