コード例 #1
0
ファイル: symbolic.py プロジェクト: malb/publications
def asymptotic_simplify_term(term, x):
    """
    Recursively drop additive terms which are dominated asymptotically by other terms.

    :param term: term to process
    :param x: variable going to infinity

    :returns: a simpler term with the same asymptotic behaviour

    .. note::

        This should be replaced by Sage's asymptotic ring.
    """
    from sage.symbolic.operators import add_vararg, mul_vararg
    if term.operator() ==  add_vararg:
        ret = []
        for op1 in term.operands():
            for op2 in term.operands():
                # akward notation to make limit(foo, kappa=infinity) work
                if limit(abs(op1)/abs(op2), **{str(x):Infinity}) < 1:
                    break
            else:
                ret.append(asymptotic_simplify_term(op1, x))
        ret = add_vararg(*ret)
    elif term.operator() == mul_vararg:
        ret = mul_vararg(*[asymptotic_simplify_term(op, x) for op in term.operands()])
    else:
        ret = term
    return ret
コード例 #2
0
def asymptotic_simplify_term(term, x):
    """
    Recursively drop additive terms which are dominated asymptotically by other terms.

    :param term: term to process
    :param x: variable going to infinity

    :returns: a simpler term with the same asymptotic behaviour

    .. note::

        This should be replaced by Sage's asymptotic ring.
    """
    from sage.symbolic.operators import add_vararg, mul_vararg
    if term.operator() == add_vararg:
        ret = []
        for op1 in term.operands():
            for op2 in term.operands():
                # akward notation to make limit(foo, kappa=infinity) work
                if limit(abs(op1) / abs(op2), **{str(x): Infinity}) < 1:
                    break
            else:
                ret.append(asymptotic_simplify_term(op1, x))
        ret = add_vararg(*ret)
    elif term.operator() == mul_vararg:
        ret = mul_vararg(
            *[asymptotic_simplify_term(op, x) for op in term.operands()])
    else:
        ret = term
    return ret
コード例 #3
0
        def _substitute_(self, rules):
            r"""
            Substitute the given ``rules`` in this
            Cartesian product growth element.

            INPUT:

            - ``rules`` -- a dictionary.
              The neutral element of the group is replaced by the value
              to key ``'_one_'``.

            OUTPUT:

            An object.

            TESTS::

                sage: from sage.rings.asymptotic.growth_group import GrowthGroup
                sage: G = GrowthGroup('x^QQ * log(x)^QQ')
                sage: G(x^3 * log(x)^5)._substitute_({'x': SR.var('z')})
                z^3*log(z)^5
                sage: _.parent()
                Symbolic Ring
                sage: G(x^3 * log(x)^5)._substitute_({'x': 2.2})  # rel tol 1e-6
                3.24458458945
                sage: _.parent()
                Real Field with 53 bits of precision
                sage: G(1 / x)._substitute_({'x': 0})
                Traceback (most recent call last):
                ...
                ZeroDivisionError: Cannot substitute in x^(-1) in
                Growth Group x^QQ * log(x)^QQ.
                > *previous* ZeroDivisionError: Cannot substitute in x^(-1) in
                Growth Group x^QQ.
                >> *previous* ZeroDivisionError: rational division by zero
                sage: G(1)._substitute_({'_one_': 'one'})
                'one'
            """
            if self.is_one():
                return rules["_one_"]
            from sage.symbolic.operators import mul_vararg

            try:
                return mul_vararg(*tuple(x._substitute_(rules) for x in self.cartesian_factors()))
            except (ArithmeticError, TypeError, ValueError) as e:
                from misc import substitute_raise_exception

                substitute_raise_exception(self, e)
コード例 #4
0
        def _substitute_(self, rules):
            r"""
            Substitute the given ``rules`` in this
            Cartesian product growth element.

            INPUT:

            - ``rules`` -- a dictionary.
              The neutral element of the group is replaced by the value
              to key ``'_one_'``.

            OUTPUT:

            An object.

            TESTS::

                sage: from sage.rings.asymptotic.growth_group import GrowthGroup
                sage: G = GrowthGroup('x^QQ * log(x)^QQ')
                sage: G(x^3 * log(x)^5)._substitute_({'x': SR.var('z')})
                z^3*log(z)^5
                sage: _.parent()
                Symbolic Ring
                sage: G(x^3 * log(x)^5)._substitute_({'x': 2.2})  # rel tol 1e-6
                3.24458458945
                sage: _.parent()
                Real Field with 53 bits of precision
                sage: G(1 / x)._substitute_({'x': 0})
                Traceback (most recent call last):
                ...
                ZeroDivisionError: Cannot substitute in x^(-1) in
                Growth Group x^QQ * log(x)^QQ.
                > *previous* ZeroDivisionError: Cannot substitute in x^(-1) in
                Growth Group x^QQ.
                >> *previous* ZeroDivisionError: rational division by zero
                sage: G(1)._substitute_({'_one_': 'one'})
                'one'
            """
            if self.is_one():
                return rules['_one_']
            from sage.symbolic.operators import mul_vararg
            try:
                return mul_vararg(
                    *tuple(x._substitute_(rules)
                           for x in self.cartesian_factors()))
            except (ArithmeticError, TypeError, ValueError) as e:
                from .misc import substitute_raise_exception
                substitute_raise_exception(self, e)