コード例 #1
0
def test_mxnet_with_rules_and_actions(
    sagemaker_session,
    mxnet_training_latest_version,
    mxnet_training_latest_py_version,
    cpu_instance_type,
    actions,
):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        rules = [
            Rule.sagemaker(rule_configs.vanishing_gradient(), actions=actions),
            Rule.sagemaker(
                base_config=rule_configs.all_zero(),
                rule_parameters={"tensor_regex": ".*"},
                actions=actions,
            ),
            Rule.sagemaker(rule_configs.loss_not_decreasing(),
                           actions=actions),
        ]

        script_path = os.path.join(DATA_DIR, "mxnet_mnist", "mnist_gluon.py")
        data_path = os.path.join(DATA_DIR, "mxnet_mnist")

        mx = MXNet(
            entry_point=script_path,
            role="SageMakerRole",
            framework_version=mxnet_training_latest_version,
            py_version=mxnet_training_latest_py_version,
            instance_count=1,
            instance_type=cpu_instance_type,
            sagemaker_session=sagemaker_session,
            rules=rules,
        )

        train_input = mx.sagemaker_session.upload_data(
            path=os.path.join(data_path, "train"),
            key_prefix="integ-test-data/mxnet_mnist/train")
        test_input = mx.sagemaker_session.upload_data(
            path=os.path.join(data_path, "test"),
            key_prefix="integ-test-data/mxnet_mnist/test")

        mx.fit({"train": train_input, "test": test_input})

        job_description = mx.latest_training_job.describe()

        for index, rule in enumerate(rules):
            assert (job_description["DebugRuleConfigurations"][index]
                    ["RuleConfigurationName"] == rule.name)
            assert (job_description["DebugRuleConfigurations"][index]
                    ["RuleEvaluatorImage"] == rule.image_uri)
            assert job_description["DebugRuleConfigurations"][index][
                "VolumeSizeInGB"] == 0
            assert (job_description["DebugRuleConfigurations"][index]
                    ["RuleParameters"]["rule_to_invoke"] ==
                    rule.rule_parameters["rule_to_invoke"])

        assert (_get_rule_evaluation_statuses(job_description) ==
                mx.latest_training_job.rule_job_summary())

        _wait_and_assert_that_no_rule_jobs_errored(
            training_job=mx.latest_training_job)
コード例 #2
0
def _get_custom_rule(session):
    script_path = os.path.join(DATA_DIR, "mxnet_mnist", "my_custom_rule.py")

    return Rule.custom(
        name="test-custom-rule",
        source=script_path,
        rule_to_invoke="CustomGradientRule",
        instance_type="ml.m5.xlarge",
        volume_size_in_gb=30,
        image_uri=CUSTOM_RULE_REPO_WITH_PLACEHOLDERS.format(
            CUSTOM_RULE_CONTAINERS_ACCOUNTS_MAP[session.boto_region_name], session.boto_region_name
        ),
    )
コード例 #3
0
def test_mxnet_with_all_rules_and_configs(
    sagemaker_session,
    mxnet_training_latest_version,
    mxnet_training_latest_py_version,
    cpu_instance_type,
):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        rules = [
            Rule.sagemaker(rule_configs.vanishing_gradient()),
            Rule.sagemaker(
                base_config=rule_configs.all_zero(), rule_parameters={"tensor_regex": ".*"}
            ),
            Rule.sagemaker(rule_configs.loss_not_decreasing()),
            _get_custom_rule(sagemaker_session),
        ]
        debugger_hook_config = DebuggerHookConfig(
            s3_output_path=os.path.join(
                "s3://", sagemaker_session.default_bucket(), str(uuid.uuid4()), "tensors"
            )
        )
        tensorboard_output_config = TensorBoardOutputConfig(
            s3_output_path=os.path.join(
                "s3://", sagemaker_session.default_bucket(), str(uuid.uuid4()), "tensorboard"
            )
        )

        script_path = os.path.join(DATA_DIR, "mxnet_mnist", "mnist_gluon.py")
        data_path = os.path.join(DATA_DIR, "mxnet_mnist")

        mx = MXNet(
            entry_point=script_path,
            role="SageMakerRole",
            framework_version=mxnet_training_latest_version,
            py_version=mxnet_training_latest_py_version,
            instance_count=1,
            instance_type=cpu_instance_type,
            sagemaker_session=sagemaker_session,
            rules=rules,
            debugger_hook_config=debugger_hook_config,
            tensorboard_output_config=tensorboard_output_config,
        )

        train_input = mx.sagemaker_session.upload_data(
            path=os.path.join(data_path, "train"), key_prefix="integ-test-data/mxnet_mnist/train"
        )
        test_input = mx.sagemaker_session.upload_data(
            path=os.path.join(data_path, "test"), key_prefix="integ-test-data/mxnet_mnist/test"
        )

        mx.fit({"train": train_input, "test": test_input})

        job_description = mx.latest_training_job.describe()

        for index, rule in enumerate(rules):
            assert (
                job_description["DebugRuleConfigurations"][index]["RuleConfigurationName"]
                == rule.name
            )
            assert (
                job_description["DebugRuleConfigurations"][index]["RuleEvaluatorImage"]
                == rule.image_uri
            )
        assert job_description["DebugHookConfig"] == debugger_hook_config._to_request_dict()
        assert (
            job_description["TensorBoardOutputConfig"]
            == tensorboard_output_config._to_request_dict()
        )
        assert (
            _get_rule_evaluation_statuses(job_description)
            == mx.latest_training_job.rule_job_summary()
        )

        _wait_and_assert_that_no_rule_jobs_errored(training_job=mx.latest_training_job)