def test_model_package_create_transformer(sagemaker_session): model_package = ModelPackage(role="role", model_package_arn="my-model-package", sagemaker_session=sagemaker_session) model_package.name = "auto-generated-model" transformer = model_package.transformer(instance_count=1, instance_type="ml.m4.xlarge", env={"test": True}) assert isinstance(transformer, sagemaker.transformer.Transformer) assert transformer.model_name == "auto-generated-model" assert transformer.instance_type == "ml.m4.xlarge" assert transformer.env == {"test": True}
def test_model_package_create_transformer(sagemaker_session): sagemaker_session.sagemaker_client.describe_model_package = Mock( return_value=DESCRIBE_MODEL_PACKAGE_RESPONSE) model_package = ModelPackage(role='role', model_package_arn='my-model-package', sagemaker_session=sagemaker_session) model_package.name = 'auto-generated-model' transformer = model_package.transformer(instance_count=1, instance_type='ml.m4.xlarge', env={'test': True}) assert isinstance(transformer, sagemaker.transformer.Transformer) assert transformer.model_name == 'auto-generated-model' assert transformer.instance_type == 'ml.m4.xlarge' assert transformer.env == {'test': True}
def test_model_package_create_transformer_with_product_id(sagemaker_session): model_package_response = copy.deepcopy(DESCRIBE_MODEL_PACKAGE_RESPONSE) model_package_response['InferenceSpecification']['Containers'].append( { 'Image': '1.dkr.ecr.us-east-2.amazonaws.com/some-container:latest', 'ModelDataUrl': 's3://bucket/output/model.tar.gz', 'ProductId': 'some-product-id' } ) sagemaker_session.sagemaker_client.describe_model_package = Mock( return_value=model_package_response) model_package = ModelPackage(role='role', model_package_arn='my-model-package', sagemaker_session=sagemaker_session) model_package.name = 'auto-generated-model' transformer = model_package.transformer(instance_count=1, instance_type='ml.m4.xlarge', env={'test': True}) assert isinstance(transformer, sagemaker.transformer.Transformer) assert transformer.model_name == 'auto-generated-model' assert transformer.instance_type == 'ml.m4.xlarge' assert transformer.env is None
def test_model_package_create_transformer_with_product_id(sagemaker_session): model_package_response = copy.deepcopy(DESCRIBE_MODEL_PACKAGE_RESPONSE) model_package_response["InferenceSpecification"]["Containers"].append({ "Image": "1.dkr.ecr.us-east-2.amazonaws.com/some-container:latest", "ModelDataUrl": "s3://bucket/output/model.tar.gz", "ProductId": "some-product-id", }) sagemaker_session.sagemaker_client.describe_model_package = Mock( return_value=model_package_response) model_package = ModelPackage(role="role", model_package_arn="my-model-package", sagemaker_session=sagemaker_session) model_package.name = "auto-generated-model" transformer = model_package.transformer(instance_count=1, instance_type="ml.m4.xlarge", env={"test": True}) assert isinstance(transformer, sagemaker.transformer.Transformer) assert transformer.model_name == "auto-generated-model" assert transformer.instance_type == "ml.m4.xlarge" assert transformer.env is None