コード例 #1
0
def test_stop_tuning_job(sagemaker_session, tuner):
    sagemaker_session.stop_tuning_job = Mock(name='stop_hyper_parameter_tuning_job')
    tuner.latest_tuning_job = _TuningJob(sagemaker_session, JOB_NAME)

    tuner.stop_tuning_job()

    sagemaker_session.stop_tuning_job.assert_called_once_with(name=JOB_NAME)
コード例 #2
0
def test_wait(tuner):
    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    tuner.estimator.sagemaker_session.wait_for_tuning_job = Mock(name='wait_for_tuning_job')

    tuner.wait()

    tuner.estimator.sagemaker_session.wait_for_tuning_job.assert_called_once_with(JOB_NAME)
コード例 #3
0
def test_stop_tuning_job(sagemaker_session, tuner):
    sagemaker_session.stop_tuning_job = Mock(name='stop_hyper_parameter_tuning_job')
    tuner.latest_tuning_job = _TuningJob(sagemaker_session, JOB_NAME)

    tuner.stop_tuning_job()

    sagemaker_session.stop_tuning_job.assert_called_once_with(name=JOB_NAME)
コード例 #4
0
def test_deploy_default(tuner):
    returned_training_job_description = {
        'AlgorithmSpecification': {
            'TrainingInputMode': 'File',
            'TrainingImage': IMAGE_NAME
        },
        'HyperParameters': {
            'sagemaker_submit_directory': '"s3://some/sourcedir.tar.gz"',
            'checkpoint_path': '"s3://other/1508872349"',
            'sagemaker_program': '"iris-dnn-classifier.py"',
            'sagemaker_enable_cloudwatch_metrics': 'false',
            'sagemaker_container_log_level': '"logging.INFO"',
            'sagemaker_job_name': '"neo"',
            'training_steps': '100',
            '_tuning_objective_metric': 'Validation-accuracy',
        },

        'RoleArn': ROLE,
        'ResourceConfig': {
            'VolumeSizeInGB': 30,
            'InstanceCount': 1,
            'InstanceType': 'ml.c4.xlarge'
        },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 24 * 60 * 60
        },
        'TrainingJobName': 'neo',
        'TrainingJobStatus': 'Completed',
        'OutputDataConfig': {
            'KmsKeyId': '',
            'S3OutputPath': 's3://place/output/neo'
        },
        'TrainingJobOutput': {
            'S3TrainingJobOutput': 's3://here/output.tar.gz'
        },
        'ModelArtifacts': {
            'S3ModelArtifacts': MODEL_DATA
        }
    }
    tuning_job_description = {'BestTrainingJob': {'TrainingJobName': JOB_NAME}}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_training_job = \
        Mock(name='describe_training_job', return_value=returned_training_job_description)
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)
    tuner.estimator.sagemaker_session.log_for_jobs = Mock(name='log_for_jobs')

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    predictor = tuner.deploy(TRAIN_INSTANCE_COUNT, TRAIN_INSTANCE_TYPE)

    tuner.estimator.sagemaker_session.create_model.assert_called_once()
    args = tuner.estimator.sagemaker_session.create_model.call_args[0]
    assert args[0].startswith(IMAGE_NAME)
    assert args[1] == ROLE
    assert args[2]['Image'] == IMAGE_NAME
    assert args[2]['ModelDataUrl'] == MODEL_DATA

    assert isinstance(predictor, RealTimePredictor)
    assert predictor.endpoint.startswith(JOB_NAME)
    assert predictor.sagemaker_session == tuner.estimator.sagemaker_session
コード例 #5
0
def test_deploy_default(tuner):
    returned_training_job_description = {
        'AlgorithmSpecification': {
            'TrainingInputMode': 'File',
            'TrainingImage': IMAGE_NAME
        },
        'HyperParameters': {
            'sagemaker_submit_directory': '"s3://some/sourcedir.tar.gz"',
            'checkpoint_path': '"s3://other/1508872349"',
            'sagemaker_program': '"iris-dnn-classifier.py"',
            'sagemaker_enable_cloudwatch_metrics': 'false',
            'sagemaker_container_log_level': '"logging.INFO"',
            'sagemaker_job_name': '"neo"',
            'training_steps': '100',
            '_tuning_objective_metric': 'Validation-accuracy',
        },

        'RoleArn': ROLE,
        'ResourceConfig': {
            'VolumeSizeInGB': 30,
            'InstanceCount': 1,
            'InstanceType': 'ml.c4.xlarge'
        },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 24 * 60 * 60
        },
        'TrainingJobName': 'neo',
        'TrainingJobStatus': 'Completed',
        'OutputDataConfig': {
            'KmsKeyId': '',
            'S3OutputPath': 's3://place/output/neo'
        },
        'TrainingJobOutput': {
            'S3TrainingJobOutput': 's3://here/output.tar.gz'
        },
        'ModelArtifacts': {
            'S3ModelArtifacts': MODEL_DATA
        }
    }
    tuning_job_description = {'BestTrainingJob': {'TrainingJobName': JOB_NAME}}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_training_job = \
        Mock(name='describe_training_job', return_value=returned_training_job_description)
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)
    tuner.estimator.sagemaker_session.log_for_jobs = Mock(name='log_for_jobs')

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    predictor = tuner.deploy(TRAIN_INSTANCE_COUNT, TRAIN_INSTANCE_TYPE)

    tuner.estimator.sagemaker_session.create_model.assert_called_once()
    args = tuner.estimator.sagemaker_session.create_model.call_args[0]
    assert args[0].startswith(IMAGE_NAME)
    assert args[1] == ROLE
    assert args[2]['Image'] == IMAGE_NAME
    assert args[2]['ModelDataUrl'] == MODEL_DATA

    assert isinstance(predictor, RealTimePredictor)
    assert predictor.endpoint.startswith(JOB_NAME)
    assert predictor.sagemaker_session == tuner.estimator.sagemaker_session
コード例 #6
0
def test_wait(tuner):
    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    tuner.estimator.sagemaker_session.wait_for_tuning_job = Mock(name='wait_for_tuning_job')

    tuner.wait()

    tuner.estimator.sagemaker_session.wait_for_tuning_job.assert_called_once_with(JOB_NAME)
コード例 #7
0
def test_tuning_job_wait(sagemaker_session):
    sagemaker_session.wait_for_tuning_job = Mock(name='wait_for_tuning_job')

    tuning_job = _TuningJob(sagemaker_session, JOB_NAME)
    tuning_job.wait()

    sagemaker_session.wait_for_tuning_job.assert_called_once_with(JOB_NAME)
コード例 #8
0
def test_tuning_job_wait(sagemaker_session):
    sagemaker_session.wait_for_tuning_job = Mock(name='wait_for_tuning_job')

    tuning_job = _TuningJob(sagemaker_session, JOB_NAME)
    tuning_job.wait()

    sagemaker_session.wait_for_tuning_job.assert_called_once_with(JOB_NAME)
コード例 #9
0
def test_deploy_default(tuner):
    returned_training_job_description = {
        "AlgorithmSpecification": {
            "TrainingInputMode": "File",
            "TrainingImage": IMAGE_NAME,
            "MetricDefinitions": METRIC_DEFINITIONS,
        },
        "HyperParameters": {
            "sagemaker_submit_directory": '"s3://some/sourcedir.tar.gz"',
            "checkpoint_path": '"s3://other/1508872349"',
            "sagemaker_program": '"iris-dnn-classifier.py"',
            "sagemaker_enable_cloudwatch_metrics": "false",
            "sagemaker_container_log_level": '"logging.INFO"',
            "sagemaker_job_name": '"neo"',
            "training_steps": "100",
            "_tuning_objective_metric": "Validation-accuracy",
        },
        "RoleArn": ROLE,
        "ResourceConfig": {
            "VolumeSizeInGB": 30,
            "InstanceCount": 1,
            "InstanceType": "ml.c4.xlarge",
        },
        "StoppingCondition": {"MaxRuntimeInSeconds": 24 * 60 * 60},
        "TrainingJobName": "neo",
        "TrainingJobStatus": "Completed",
        "TrainingJobArn": "arn:aws:sagemaker:us-west-2:336:training-job/neo",
        "OutputDataConfig": {"KmsKeyId": "", "S3OutputPath": "s3://place/output/neo"},
        "TrainingJobOutput": {"S3TrainingJobOutput": "s3://here/output.tar.gz"},
        "ModelArtifacts": {"S3ModelArtifacts": MODEL_DATA},
    }
    tuning_job_description = {"BestTrainingJob": {"TrainingJobName": JOB_NAME}}
    returned_list_tags = {"Tags": [{"Key": "TagtestKey", "Value": "TagtestValue"}]}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_training_job = Mock(
        name="describe_training_job", return_value=returned_training_job_description
    )
    tuner.estimator.sagemaker_session.sagemaker_client.list_tags = Mock(
        name="list_tags", return_value=returned_list_tags
    )
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name="describe_hyper_parameter_tuning_job", return_value=tuning_job_description
    )
    tuner.estimator.sagemaker_session.log_for_jobs = Mock(name="log_for_jobs")

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    predictor = tuner.deploy(TRAIN_INSTANCE_COUNT, TRAIN_INSTANCE_TYPE)

    tuner.estimator.sagemaker_session.create_model.assert_called_once()
    args = tuner.estimator.sagemaker_session.create_model.call_args[0]

    assert args[0] == "neo"
    assert args[1] == ROLE
    assert args[2]["Image"] == IMAGE_NAME
    assert args[2]["ModelDataUrl"] == MODEL_DATA

    assert isinstance(predictor, RealTimePredictor)
    assert predictor.endpoint.startswith(JOB_NAME)
    assert predictor.sagemaker_session == tuner.estimator.sagemaker_session
コード例 #10
0
def test_start_new(tuner, sagemaker_session):
    tuning_job = _TuningJob(sagemaker_session, JOB_NAME)

    tuner.static_hyperparameters = {}
    started_tuning_job = tuning_job.start_new(tuner, INPUTS)

    assert started_tuning_job.sagemaker_session == sagemaker_session
    sagemaker_session.tune.assert_called_once()
コード例 #11
0
def test_start_new(tuner, sagemaker_session):
    tuning_job = _TuningJob(sagemaker_session, JOB_NAME)

    tuner.static_hyperparameters = {}
    started_tuning_job = tuning_job.start_new(tuner, INPUTS)

    assert started_tuning_job.sagemaker_session == sagemaker_session
    sagemaker_session.tune.assert_called_once()
コード例 #12
0
def test_delete_endpoint(tuner):
    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)

    tuning_job_description = {'BestTrainingJob': {'TrainingJobName': JOB_NAME}}
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)

    tuner.delete_endpoint()
    tuner.sagemaker_session.delete_endpoint.assert_called_with(JOB_NAME)
コード例 #13
0
def test_delete_endpoint(tuner):
    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)

    tuning_job_description = {'BestTrainingJob': {'TrainingJobName': JOB_NAME}}
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)

    tuner.delete_endpoint()
    tuner.sagemaker_session.delete_endpoint.assert_called_with(JOB_NAME)
コード例 #14
0
def test_best_tuning_job(tuner):
    tuning_job_description = {'BestTrainingJob': {'TrainingJobName': JOB_NAME}}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    best_training_job = tuner.best_training_job()

    assert best_training_job == JOB_NAME
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job.assert_called_once_with(
        HyperParameterTuningJobName=JOB_NAME)
コード例 #15
0
def test_best_tuning_job(tuner):
    tuning_job_description = {'BestTrainingJob': {'TrainingJobName': JOB_NAME}}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)
    best_training_job = tuner.best_training_job()

    assert best_training_job == JOB_NAME
    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job.assert_called_once_with(
        HyperParameterTuningJobName=JOB_NAME)
コード例 #16
0
def test_best_tuning_job_no_best_job(tuner):
    tuning_job_description = {'BestTrainingJob': {'Mock': None}}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)

    with pytest.raises(Exception) as e:
        tuner.best_training_job()

    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job.assert_called_once_with(
        HyperParameterTuningJobName=JOB_NAME)
    assert 'Best training job not available for tuning job:' in str(e)
コード例 #17
0
def test_best_tuning_job_no_best_job(tuner):
    tuning_job_description = {'BestTrainingJob': {'Mock': None}}

    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(
        name='describe_hyper_parameter_tuning_job', return_value=tuning_job_description)

    tuner.latest_tuning_job = _TuningJob(tuner.estimator.sagemaker_session, JOB_NAME)

    with pytest.raises(Exception) as e:
        tuner.best_training_job()

    tuner.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job.assert_called_once_with(
        HyperParameterTuningJobName=JOB_NAME)
    assert 'Best training job not available for tuning job:' in str(e)
コード例 #18
0
def test_analytics(tuner):
    tuner.latest_tuning_job = _TuningJob(tuner.sagemaker_session, 'testjob')
    tuner_analytics = tuner.analytics()
    assert tuner_analytics is not None
    assert tuner_analytics.name.find('testjob') > -1
コード例 #19
0
def test_stop(sagemaker_session):
    tuning_job = _TuningJob(sagemaker_session, JOB_NAME)
    tuning_job.stop()

    sagemaker_session.stop_tuning_job.assert_called_once_with(name=JOB_NAME)
コード例 #20
0
def test_analytics(tuner):
    tuner.latest_tuning_job = _TuningJob(tuner.sagemaker_session, 'testjob')
    tuner_analytics = tuner.analytics()
    assert tuner_analytics is not None
    assert tuner_analytics.name.find('testjob') > -1
コード例 #21
0
def test_stop(sagemaker_session):
    tuning_job = _TuningJob(sagemaker_session, JOB_NAME)
    tuning_job.stop()

    sagemaker_session.stop_tuning_job.assert_called_once_with(name=JOB_NAME)