コード例 #1
0
def test_create_model_step(sagemaker_session):
    model = Model(
        image_uri=IMAGE_URI,
        role=ROLE,
        sagemaker_session=sagemaker_session,
    )
    inputs = CreateModelInput(
        instance_type="c4.4xlarge",
        accelerator_type="ml.eia1.medium",
    )
    step = CreateModelStep(
        name="MyCreateModelStep",
        depends_on=["TestStep"],
        model=model,
        inputs=inputs,
    )
    step.add_depends_on(["SecondTestStep"])

    assert step.to_request() == {
        "Name": "MyCreateModelStep",
        "Type": "Model",
        "DependsOn": ["TestStep", "SecondTestStep"],
        "Arguments": {
            "ExecutionRoleArn": "DummyRole",
            "PrimaryContainer": {
                "Environment": {},
                "Image": "fakeimage"
            },
        },
    }
    assert step.properties.ModelName.expr == {
        "Get": "Steps.MyCreateModelStep.ModelName"
    }
コード例 #2
0
def test_create_model_step_with_model_pipeline(tfo, time, sagemaker_session):
    framework_model = DummyFrameworkModel(sagemaker_session)
    sparkml_model = SparkMLModel(
        model_data="s3://bucket/model_2.tar.gz",
        role=ROLE,
        sagemaker_session=sagemaker_session,
        env={"SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv"},
    )
    model = PipelineModel(models=[framework_model, sparkml_model],
                          role=ROLE,
                          sagemaker_session=sagemaker_session)
    inputs = CreateModelInput(
        instance_type="c4.4xlarge",
        accelerator_type="ml.eia1.medium",
    )
    step = CreateModelStep(
        name="MyCreateModelStep",
        depends_on=["TestStep"],
        display_name="MyCreateModelStep",
        description="TestDescription",
        model=model,
        inputs=inputs,
    )
    step.add_depends_on(["SecondTestStep"])

    assert step.to_request() == {
        "Name": "MyCreateModelStep",
        "Type": "Model",
        "Description": "TestDescription",
        "DisplayName": "MyCreateModelStep",
        "DependsOn": ["TestStep", "SecondTestStep"],
        "Arguments": {
            "Containers": [
                {
                    "Environment": {
                        "SAGEMAKER_PROGRAM": "dummy_script.py",
                        "SAGEMAKER_SUBMIT_DIRECTORY":
                        "s3://my-bucket/mi-1-2017-10-10-14-14-15/sourcedir.tar.gz",
                        "SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
                        "SAGEMAKER_REGION": "us-west-2",
                    },
                    "Image": "mi-1",
                    "ModelDataUrl": "s3://bucket/model_1.tar.gz",
                },
                {
                    "Environment": {
                        "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv"
                    },
                    "Image":
                    "246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sparkml-serving:2.4",
                    "ModelDataUrl": "s3://bucket/model_2.tar.gz",
                },
            ],
            "ExecutionRoleArn":
            "DummyRole",
        },
    }
    assert step.properties.ModelName.expr == {
        "Get": "Steps.MyCreateModelStep.ModelName"
    }
コード例 #3
0
 def _append_create_model_step(self):
     """Create and append a `CreateModelStep`"""
     create_model_step = CreateModelStep(
         name="{}-{}".format(self.name, _CREATE_MODEL_NAME_BASE),
         step_args=self._create_model_args,
         retry_policies=self._create_model_retry_policies,
         display_name=self.display_name,
         description=self.description,
     )
     if not self._need_runtime_repack:
         create_model_step.add_depends_on(self.depends_on)
     self.steps.append(create_model_step)
コード例 #4
0
    def __init__(
        self,
        name: str,
        estimator: EstimatorBase,
        model_data,
        model_inputs,
        instance_count,
        instance_type,
        transform_inputs,
        # model arguments
        image_uri=None,
        predictor_cls=None,
        env=None,
        # transformer arguments
        strategy=None,
        assemble_with=None,
        output_path=None,
        output_kms_key=None,
        accept=None,
        max_concurrent_transforms=None,
        max_payload=None,
        tags=None,
        volume_kms_key=None,
        depends_on: List[str] = None,
        **kwargs,
    ):
        """Construct steps required for a Transformer step collection:

        An estimator-centric step collection. It models what happens in workflows
        when invoking the `transform()` method on an estimator instance:
        First, if custom
        model artifacts are required, a `_RepackModelStep` is included.
        Second, a
        `CreateModelStep` with the model data passed in from a training step or other
        training job output.
        Finally, a `TransformerStep`.

        If repacking
        the model artifacts is not necessary, only the CreateModelStep and TransformerStep
        are in the step collection.

        Args:
            name (str): The name of the Transform Step.
            estimator: The estimator instance.
            instance_count (int): The number of EC2 instances to use.
            instance_type (str): The type of EC2 instance to use.
            strategy (str): The strategy used to decide how to batch records in
                a single request (default: None). Valid values: 'MultiRecord'
                and 'SingleRecord'.
            assemble_with (str): How the output is assembled (default: None).
                Valid values: 'Line' or 'None'.
            output_path (str): The S3 location for saving the transform result. If
                not specified, results are stored to a default bucket.
            output_kms_key (str): Optional. A KMS key ID for encrypting the
                transform output (default: None).
            accept (str): The accept header passed by the client to
                the inference endpoint. If it is supported by the endpoint,
                it will be the format of the batch transform output.
            env (dict): The Environment variables to be set for use during the
                transform job (default: None).
            depends_on (List[str]): The list of step names the first step in
                the collection depends on
        """
        steps = []
        if "entry_point" in kwargs:
            entry_point = kwargs["entry_point"]
            source_dir = kwargs.get("source_dir")
            dependencies = kwargs.get("dependencies")
            repack_model_step = _RepackModelStep(
                name=f"{name}RepackModel",
                depends_on=depends_on,
                estimator=estimator,
                model_data=model_data,
                entry_point=entry_point,
                source_dir=source_dir,
                dependencies=dependencies,
            )
            steps.append(repack_model_step)
            model_data = repack_model_step.properties.ModelArtifacts.S3ModelArtifacts

        def predict_wrapper(endpoint, session):
            return Predictor(endpoint, session)

        predictor_cls = predictor_cls or predict_wrapper

        model = Model(
            image_uri=image_uri or estimator.training_image_uri(),
            model_data=model_data,
            predictor_cls=predictor_cls,
            vpc_config=None,
            sagemaker_session=estimator.sagemaker_session,
            role=estimator.role,
            **kwargs,
        )
        model_step = CreateModelStep(
            name=f"{name}CreateModelStep",
            model=model,
            inputs=model_inputs,
        )
        if "entry_point" not in kwargs and depends_on:
            # if the CreateModelStep is the first step in the collection
            model_step.add_depends_on(depends_on)
        steps.append(model_step)

        transformer = Transformer(
            model_name=model_step.properties.ModelName,
            instance_count=instance_count,
            instance_type=instance_type,
            strategy=strategy,
            assemble_with=assemble_with,
            output_path=output_path,
            output_kms_key=output_kms_key,
            accept=accept,
            max_concurrent_transforms=max_concurrent_transforms,
            max_payload=max_payload,
            env=env,
            tags=tags,
            base_transform_job_name=name,
            volume_kms_key=volume_kms_key,
            sagemaker_session=estimator.sagemaker_session,
        )
        transform_step = TransformStep(
            name=f"{name}TransformStep",
            transformer=transformer,
            inputs=transform_inputs,
        )
        steps.append(transform_step)

        self.steps = steps
コード例 #5
0
def test_model_registration_with_model_repack(
    sagemaker_session,
    role,
    pipeline_name,
    region_name,
):
    base_dir = os.path.join(DATA_DIR, "pytorch_mnist")
    entry_point = os.path.join(base_dir, "mnist.py")
    input_path = sagemaker_session.upload_data(
        path=os.path.join(base_dir, "training"),
        key_prefix="integ-test-data/pytorch_mnist/training",
    )
    inputs = TrainingInput(s3_data=input_path)

    instance_count = ParameterInteger(name="InstanceCount", default_value=1)
    instance_type = ParameterString(name="InstanceType",
                                    default_value="ml.m5.xlarge")
    good_enough_input = ParameterInteger(name="GoodEnoughInput",
                                         default_value=1)

    pytorch_estimator = PyTorch(
        entry_point=entry_point,
        role=role,
        framework_version="1.5.0",
        py_version="py3",
        instance_count=instance_count,
        instance_type=instance_type,
        sagemaker_session=sagemaker_session,
    )
    step_train = TrainingStep(
        name="pytorch-train",
        estimator=pytorch_estimator,
        inputs=inputs,
    )

    step_register = RegisterModel(
        name="pytorch-register-model",
        estimator=pytorch_estimator,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["*"],
        response_types=["*"],
        inference_instances=["*"],
        transform_instances=["*"],
        description="test-description",
        entry_point=entry_point,
    )

    model = Model(
        image_uri=pytorch_estimator.training_image_uri(),
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sagemaker_session,
        role=role,
    )
    model_inputs = CreateModelInput(
        instance_type="ml.m5.large",
        accelerator_type="ml.eia1.medium",
    )
    step_model = CreateModelStep(
        name="pytorch-model",
        model=model,
        inputs=model_inputs,
    )

    step_cond = ConditionStep(
        name="cond-good-enough",
        conditions=[
            ConditionGreaterThanOrEqualTo(left=good_enough_input, right=1)
        ],
        if_steps=[step_train, step_register],
        else_steps=[step_model],
    )

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[good_enough_input, instance_count, instance_type],
        steps=[step_cond],
        sagemaker_session=sagemaker_session,
    )

    try:
        response = pipeline.create(role)
        create_arn = response["PipelineArn"]
        assert re.match(
            fr"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}",
            create_arn)

        execution = pipeline.start(parameters={})
        assert re.match(
            fr"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
            execution.arn,
        )

        execution = pipeline.start(parameters={"GoodEnoughInput": 0})
        assert re.match(
            fr"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
            execution.arn,
        )
    finally:
        try:
            pipeline.delete()
        except Exception:
            pass
コード例 #6
0
def test_three_step_definition(
    sagemaker_session,
    region_name,
    role,
    script_dir,
    pipeline_name,
    athena_dataset_definition,
):
    framework_version = "0.20.0"
    instance_type = ParameterString(name="InstanceType",
                                    default_value="ml.m5.xlarge")
    instance_count = ParameterInteger(name="InstanceCount", default_value=1)
    output_prefix = ParameterString(name="OutputPrefix",
                                    default_value="output")

    input_data = f"s3://sagemaker-sample-data-{region_name}/processing/census/census-income.csv"

    sklearn_processor = SKLearnProcessor(
        framework_version=framework_version,
        instance_type=instance_type,
        instance_count=instance_count,
        base_job_name="test-sklearn",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_process = ProcessingStep(
        name="my-process",
        processor=sklearn_processor,
        inputs=[
            ProcessingInput(source=input_data,
                            destination="/opt/ml/processing/input"),
            ProcessingInput(dataset_definition=athena_dataset_definition),
        ],
        outputs=[
            ProcessingOutput(output_name="train_data",
                             source="/opt/ml/processing/train"),
            ProcessingOutput(
                output_name="test_data",
                source="/opt/ml/processing/test",
                destination=Join(
                    on="/",
                    values=[
                        "s3:/",
                        sagemaker_session.default_bucket(),
                        "test-sklearn",
                        output_prefix,
                        ExecutionVariables.PIPELINE_EXECUTION_ID,
                    ],
                ),
            ),
        ],
        code=os.path.join(script_dir, "preprocessing.py"),
    )

    sklearn_train = SKLearn(
        framework_version=framework_version,
        entry_point=os.path.join(script_dir, "train.py"),
        instance_type=instance_type,
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_train = TrainingStep(
        name="my-train",
        estimator=sklearn_train,
        inputs=TrainingInput(
            s3_data=step_process.properties.ProcessingOutputConfig.
            Outputs["train_data"].S3Output.S3Uri),
    )

    model = Model(
        image_uri=sklearn_train.image_uri,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sagemaker_session,
        role=role,
    )
    model_inputs = CreateModelInput(
        instance_type="ml.m5.large",
        accelerator_type="ml.eia1.medium",
    )
    step_model = CreateModelStep(
        name="my-model",
        model=model,
        inputs=model_inputs,
    )

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[instance_type, instance_count, output_prefix],
        steps=[step_process, step_train, step_model],
        sagemaker_session=sagemaker_session,
    )

    definition = json.loads(pipeline.definition())
    assert definition["Version"] == "2020-12-01"

    assert set(tuple(param.items())
               for param in definition["Parameters"]) == set([
                   tuple({
                       "Name": "InstanceType",
                       "Type": "String",
                       "DefaultValue": "ml.m5.xlarge"
                   }.items()),
                   tuple({
                       "Name": "InstanceCount",
                       "Type": "Integer",
                       "DefaultValue": 1
                   }.items()),
                   tuple({
                       "Name": "OutputPrefix",
                       "Type": "String",
                       "DefaultValue": "output"
                   }.items()),
               ])

    steps = definition["Steps"]
    assert len(steps) == 3

    names_and_types = []
    processing_args = {}
    training_args = {}
    for step in steps:
        names_and_types.append((step["Name"], step["Type"]))
        if step["Type"] == "Processing":
            processing_args = step["Arguments"]
        if step["Type"] == "Training":
            training_args = step["Arguments"]
        if step["Type"] == "Model":
            model_args = step["Arguments"]

    assert set(names_and_types) == set([
        ("my-process", "Processing"),
        ("my-train", "Training"),
        ("my-model", "Model"),
    ])

    assert processing_args["ProcessingResources"]["ClusterConfig"] == {
        "InstanceType": {
            "Get": "Parameters.InstanceType"
        },
        "InstanceCount": {
            "Get": "Parameters.InstanceCount"
        },
        "VolumeSizeInGB": 30,
    }

    assert training_args["ResourceConfig"] == {
        "InstanceCount": 1,
        "InstanceType": {
            "Get": "Parameters.InstanceType"
        },
        "VolumeSizeInGB": 30,
    }
    assert training_args["InputDataConfig"][0]["DataSource"]["S3DataSource"][
        "S3Uri"] == {
            "Get":
            "Steps.my-process.ProcessingOutputConfig.Outputs['train_data'].S3Output.S3Uri"
        }
    assert model_args["PrimaryContainer"]["ModelDataUrl"] == {
        "Get": "Steps.my-train.ModelArtifacts.S3ModelArtifacts"
    }
    try:
        response = pipeline.create(role)
        create_arn = response["PipelineArn"]
        assert re.match(
            fr"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}",
            create_arn,
        )
    finally:
        try:
            pipeline.delete()
        except Exception:
            pass
コード例 #7
0
def get_pipeline(region, role, default_bucket, pipeline_name,
                 model_package_group_name, base_job_prefix):
    """Gets a SageMaker ML Pipeline instance working with BERT.

    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts
        pipeline_name:  name of this pipeline
        model_package_group_name:  model package group
        base_job_prefix:  prefic of the job name

    Returns:
        an instance of a pipeline
    """

    sm = boto3.Session().client(service_name="sagemaker", region_name=region)

    input_data = ParameterString(
        name="InputDataUrl",
        default_value="s3://{}/amazon-reviews-pds/tsv/".format(bucket),
    )

    processing_instance_count = ParameterInteger(
        name="ProcessingInstanceCount", default_value=1)

    processing_instance_type = ParameterString(name="ProcessingInstanceType",
                                               default_value="ml.c5.2xlarge")

    max_seq_length = ParameterInteger(
        name="MaxSeqLength",
        default_value=64,
    )

    balance_dataset = ParameterString(
        name="BalanceDataset",
        default_value="True",
    )

    train_split_percentage = ParameterFloat(
        name="TrainSplitPercentage",
        default_value=0.90,
    )

    validation_split_percentage = ParameterFloat(
        name="ValidationSplitPercentage",
        default_value=0.05,
    )

    test_split_percentage = ParameterFloat(
        name="TestSplitPercentage",
        default_value=0.05,
    )

    feature_store_offline_prefix = ParameterString(
        name="FeatureStoreOfflinePrefix",
        default_value="reviews-feature-store-" + str(timestamp),
    )

    feature_group_name = ParameterString(
        name="FeatureGroupName",
        default_value="reviews-feature-group-" + str(timestamp))

    train_instance_type = ParameterString(name="TrainInstanceType",
                                          default_value="ml.c5.9xlarge")

    train_instance_count = ParameterInteger(name="TrainInstanceCount",
                                            default_value=1)

    #########################
    # PROCESSING STEP
    #########################

    processor = SKLearnProcessor(
        framework_version="0.23-1",
        role=role,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        env={"AWS_DEFAULT_REGION": region},
        max_runtime_in_seconds=7200,
    )

    processing_inputs = [
        ProcessingInput(
            input_name="raw-input-data",
            source=input_data,
            destination="/opt/ml/processing/input/data/",
            s3_data_distribution_type="ShardedByS3Key",
        )
    ]

    processing_outputs = [
        ProcessingOutput(
            output_name="bert-train",
            s3_upload_mode="EndOfJob",
            source="/opt/ml/processing/output/bert/train",
        ),
        ProcessingOutput(
            output_name="bert-validation",
            s3_upload_mode="EndOfJob",
            source="/opt/ml/processing/output/bert/validation",
        ),
        ProcessingOutput(
            output_name="bert-test",
            s3_upload_mode="EndOfJob",
            source="/opt/ml/processing/output/bert/test",
        ),
    ]

    # TODO:  Figure out why the Parameter's are not resolving properly to their native type when user here.
    #        We shouldn't be using `default_value`
    processing_step = ProcessingStep(
        name="Processing",
        processor=processor,
        inputs=processing_inputs,
        outputs=processing_outputs,
        job_arguments=[
            "--train-split-percentage",
            str(train_split_percentage.default_value),
            "--validation-split-percentage",
            str(validation_split_percentage.default_value),
            "--test-split-percentage",
            str(test_split_percentage.default_value),
            "--max-seq-length",
            str(max_seq_length.default_value),
            "--balance-dataset",
            str(balance_dataset.default_value),
            "--feature-store-offline-prefix",
            str(feature_store_offline_prefix.default_value),
            "--feature-group-name",
            str(feature_group_name.default_value),
        ],
        code=os.path.join(BASE_DIR,
                          "preprocess-scikit-text-to-bert-feature-store.py"),
    )

    #########################
    # TRAINING STEP
    #########################

    epochs = ParameterInteger(name="Epochs", default_value=1)

    learning_rate = ParameterFloat(name="LearningRate", default_value=0.00001)

    epsilon = ParameterFloat(name="Epsilon", default_value=0.00000001)

    train_batch_size = ParameterInteger(name="TrainBatchSize",
                                        default_value=128)

    validation_batch_size = ParameterInteger(name="ValidationBatchSize",
                                             default_value=128)

    test_batch_size = ParameterInteger(name="TestBatchSize", default_value=128)

    train_steps_per_epoch = ParameterInteger(name="TrainStepsPerEpoch",
                                             default_value=50)

    validation_steps = ParameterInteger(name="ValidationSteps",
                                        default_value=50)

    test_steps = ParameterInteger(name="TestSteps", default_value=50)

    train_volume_size = ParameterInteger(name="TrainVolumeSize",
                                         default_value=1024)

    use_xla = ParameterString(
        name="UseXLA",
        default_value="True",
    )

    use_amp = ParameterString(
        name="UseAMP",
        default_value="True",
    )

    freeze_bert_layer = ParameterString(
        name="FreezeBERTLayer",
        default_value="False",
    )

    enable_sagemaker_debugger = ParameterString(
        name="EnableSageMakerDebugger",
        default_value="False",
    )

    enable_checkpointing = ParameterString(
        name="EnableCheckpointing",
        default_value="False",
    )

    enable_tensorboard = ParameterString(
        name="EnableTensorboard",
        default_value="False",
    )

    input_mode = ParameterString(
        name="InputMode",
        default_value="File",
    )

    run_validation = ParameterString(
        name="RunValidation",
        default_value="True",
    )

    run_test = ParameterString(
        name="RunTest",
        default_value="False",
    )

    run_sample_predictions = ParameterString(
        name="RunSamplePredictions",
        default_value="False",
    )

    metrics_definitions = [
        {
            "Name": "train:loss",
            "Regex": "loss: ([0-9\\.]+)"
        },
        {
            "Name": "train:accuracy",
            "Regex": "accuracy: ([0-9\\.]+)"
        },
        {
            "Name": "validation:loss",
            "Regex": "val_loss: ([0-9\\.]+)"
        },
        {
            "Name": "validation:accuracy",
            "Regex": "val_accuracy: ([0-9\\.]+)"
        },
    ]

    train_src = os.path.join(BASE_DIR, "src")
    model_path = f"s3://{default_bucket}/{base_job_prefix}/output/model"

    estimator = TensorFlow(
        entry_point="tf_bert_reviews.py",
        source_dir=BASE_DIR,
        role=role,
        output_path=model_path,
        instance_count=train_instance_count,
        instance_type=train_instance_type,
        volume_size=train_volume_size,
        py_version="py37",
        framework_version="2.3.1",
        hyperparameters={
            "epochs": epochs,
            "learning_rate": learning_rate,
            "epsilon": epsilon,
            "train_batch_size": train_batch_size,
            "validation_batch_size": validation_batch_size,
            "test_batch_size": test_batch_size,
            "train_steps_per_epoch": train_steps_per_epoch,
            "validation_steps": validation_steps,
            "test_steps": test_steps,
            "use_xla": use_xla,
            "use_amp": use_amp,
            "max_seq_length": max_seq_length,
            "freeze_bert_layer": freeze_bert_layer,
            "enable_sagemaker_debugger": enable_sagemaker_debugger,
            "enable_checkpointing": enable_checkpointing,
            "enable_tensorboard": enable_tensorboard,
            "run_validation": run_validation,
            "run_test": run_test,
            "run_sample_predictions": run_sample_predictions,
        },
        input_mode=input_mode,
        metric_definitions=metrics_definitions,
        #        max_run=7200 # max 2 hours * 60 minutes seconds per hour * 60 seconds per minute
    )

    training_step = TrainingStep(
        name="Train",
        estimator=estimator,
        inputs={
            "train":
            TrainingInput(
                s3_data=processing_step.properties.ProcessingOutputConfig.
                Outputs["bert-train"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation":
            TrainingInput(
                s3_data=processing_step.properties.ProcessingOutputConfig.
                Outputs["bert-validation"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "test":
            TrainingInput(
                s3_data=processing_step.properties.ProcessingOutputConfig.
                Outputs["bert-test"].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    #########################
    # EVALUATION STEP
    #########################

    evaluation_processor = SKLearnProcessor(
        framework_version="0.23-1",
        role=role,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        env={"AWS_DEFAULT_REGION": region},
        max_runtime_in_seconds=7200,
    )

    evaluation_report = PropertyFile(name="EvaluationReport",
                                     output_name="metrics",
                                     path="evaluation.json")

    evaluation_step = ProcessingStep(
        name="EvaluateModel",
        processor=evaluation_processor,
        code=os.path.join(BASE_DIR, "evaluate_model_metrics.py"),
        inputs=[
            ProcessingInput(
                source=training_step.properties.ModelArtifacts.
                S3ModelArtifacts,
                destination="/opt/ml/processing/input/model",
            ),
            ProcessingInput(
                source=processing_step.properties.
                ProcessingInputs["raw-input-data"].S3Input.S3Uri,
                destination="/opt/ml/processing/input/data",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="metrics",
                             s3_upload_mode="EndOfJob",
                             source="/opt/ml/processing/output/metrics/"),
        ],
        job_arguments=[
            "--max-seq-length",
            str(max_seq_length.default_value),
        ],
        property_files=[evaluation_report
                        ],  # these cause deserialization issues
    )

    model_metrics = ModelMetrics(model_statistics=MetricsSource(
        s3_uri="{}/evaluation.json".format(
            evaluation_step.arguments["ProcessingOutputConfig"]["Outputs"][0]
            ["S3Output"]["S3Uri"]),
        content_type="application/json",
    ))

    #########################
    ## REGISTER TRAINED MODEL STEP
    #########################

    model_approval_status = ParameterString(
        name="ModelApprovalStatus", default_value="PendingManualApproval")

    deploy_instance_type = ParameterString(name="DeployInstanceType",
                                           default_value="ml.m5.4xlarge")

    deploy_instance_count = ParameterInteger(name="DeployInstanceCount",
                                             default_value=1)

    inference_image_uri = sagemaker.image_uris.retrieve(
        framework="tensorflow",
        region=region,
        version="2.3.1",
        py_version="py37",
        instance_type=deploy_instance_type,
        image_scope="inference",
    )
    print(inference_image_uri)

    register_step = RegisterModel(
        name="RegisterModel",
        estimator=estimator,
        image_uri=
        inference_image_uri,  # we have to specify, by default it's using training image
        model_data=training_step.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=[
            deploy_instance_type
        ],  # The JSON spec must be within these instance types or we will see "Instance Type Not Allowed" Exception
        transform_instances=[deploy_instance_type],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
    )

    #########################
    ## CREATE MODEL FOR DEPLOYMENT STEP
    #########################

    model = Model(
        image_uri=inference_image_uri,
        model_data=training_step.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sess,
        role=role,
    )

    create_inputs = CreateModelInput(instance_type=deploy_instance_type, )

    create_step = CreateModelStep(
        name="CreateModel",
        model=model,
        inputs=create_inputs,
    )

    #########################
    ## CONDITION STEP:  EVALUATE THE MODEL
    #########################

    min_accuracy_value = ParameterFloat(name="MinAccuracyValue",
                                        default_value=0.01)

    minimum_accuracy_condition = ConditionGreaterThanOrEqualTo(
        left=JsonGet(
            step=evaluation_step,
            property_file=evaluation_report,
            json_path="metrics.accuracy.value",
        ),
        right=min_accuracy_value,  # accuracy
    )

    minimum_accuracy_condition_step = ConditionStep(
        name="AccuracyCondition",
        conditions=[minimum_accuracy_condition],
        if_steps=[register_step,
                  create_step],  # success, continue with model registration
        else_steps=[],  # fail, end the pipeline
    )

    #########################
    ## CREATE PIPELINE
    #########################

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            input_data,
            processing_instance_count,
            processing_instance_type,
            max_seq_length,
            balance_dataset,
            train_split_percentage,
            validation_split_percentage,
            test_split_percentage,
            feature_store_offline_prefix,
            feature_group_name,
            train_instance_type,
            train_instance_count,
            epochs,
            learning_rate,
            epsilon,
            train_batch_size,
            validation_batch_size,
            test_batch_size,
            train_steps_per_epoch,
            validation_steps,
            test_steps,
            train_volume_size,
            use_xla,
            use_amp,
            freeze_bert_layer,
            enable_sagemaker_debugger,
            enable_checkpointing,
            enable_tensorboard,
            input_mode,
            run_validation,
            run_test,
            run_sample_predictions,
            min_accuracy_value,
            model_approval_status,
            deploy_instance_type,
            deploy_instance_count,
        ],
        steps=[
            processing_step, training_step, evaluation_step,
            minimum_accuracy_condition_step
        ],
        sagemaker_session=sess,
    )

    #########################
    ## RETURN PIPELINE
    #########################

    return pipeline
コード例 #8
0
def test_end_to_end_pipeline_successful_execution(
    sagemaker_session, region_name, role, pipeline_name, wait=False
):
    model_package_group_name = f"{pipeline_name}ModelPackageGroup"
    data_path = os.path.join(DATA_DIR, "workflow")
    default_bucket = sagemaker_session.default_bucket()

    # download the input data
    local_input_path = os.path.join(data_path, "abalone-dataset.csv")
    s3 = sagemaker_session.boto_session.resource("s3")
    s3.Bucket(f"sagemaker-servicecatalog-seedcode-{region_name}").download_file(
        "dataset/abalone-dataset.csv", local_input_path
    )

    # # upload the input data to our bucket
    base_uri = f"s3://{default_bucket}/{pipeline_name}"
    with open(local_input_path) as data:
        body = data.read()
        input_data_uri = S3Uploader.upload_string_as_file_body(
            body=body,
            desired_s3_uri=f"{base_uri}/abalone-dataset.csv",
            sagemaker_session=sagemaker_session,
        )

    # download batch transform data
    local_batch_path = os.path.join(data_path, "abalone-dataset-batch")
    s3.Bucket(f"sagemaker-servicecatalog-seedcode-{region_name}").download_file(
        "dataset/abalone-dataset-batch", local_batch_path
    )

    # upload the batch transform data
    with open(local_batch_path) as data:
        body = data.read()
        batch_data_uri = S3Uploader.upload_string_as_file_body(
            body=body,
            desired_s3_uri=f"{base_uri}/abalone-dataset-batch",
            sagemaker_session=sagemaker_session,
        )

    # define parameters
    processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(
        name="ProcessingInstanceType", default_value="ml.m5.xlarge"
    )
    training_instance_type = ParameterString(
        name="TrainingInstanceType", default_value="ml.m5.xlarge"
    )
    model_approval_status = ParameterString(name="ModelApprovalStatus", default_value="Approved")
    input_data = ParameterString(
        name="InputData",
        default_value=input_data_uri,
    )
    batch_data = ParameterString(
        name="BatchData",
        default_value=batch_data_uri,
    )

    # define processing step
    framework_version = "0.23-1"
    sklearn_processor = SKLearnProcessor(
        framework_version=framework_version,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{pipeline_name}-process",
        role=role,
        sagemaker_session=sagemaker_session,
    )
    step_process = ProcessingStep(
        name="AbaloneProcess",
        processor=sklearn_processor,
        inputs=[
            ProcessingInput(source=input_data, destination="/opt/ml/processing/input"),
        ],
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test", source="/opt/ml/processing/test"),
        ],
        code=os.path.join(data_path, "abalone/preprocessing.py"),
    )

    # define training step
    model_path = f"s3://{default_bucket}/{pipeline_name}Train"
    image_uri = image_uris.retrieve(
        framework="xgboost",
        region=region_name,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        role=role,
        sagemaker_session=sagemaker_session,
    )
    xgb_train.set_hyperparameters(
        objective="reg:linear",
        num_round=50,
        max_depth=5,
        eta=0.2,
        gamma=4,
        min_child_weight=6,
        subsample=0.7,
        silent=0,
    )
    step_train = TrainingStep(
        name="AbaloneTrain",
        estimator=xgb_train,
        inputs={
            "train": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # define evaluation step
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{pipeline_name}-eval",
        role=role,
        sagemaker_session=sagemaker_session,
    )
    evaluation_report = PropertyFile(
        name="EvaluationReport", output_name="evaluation", path="evaluation.json"
    )
    step_eval = ProcessingStep(
        name="AbaloneEval",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(data_path, "abalone/evaluation.py"),
        property_files=[evaluation_report],
    )

    # define create model step
    model = Model(
        image_uri=image_uri,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sagemaker_session,
        role=role,
    )
    inputs = CreateModelInput(
        instance_type="ml.m5.large",
        accelerator_type="ml.eia1.medium",
    )
    step_create_model = CreateModelStep(
        name="AbaloneCreateModel",
        model=model,
        inputs=inputs,
    )

    # define transform step
    transformer = Transformer(
        model_name=step_create_model.properties.ModelName,
        instance_type="ml.m5.xlarge",
        instance_count=1,
        output_path=f"s3://{default_bucket}/{pipeline_name}Transform",
        sagemaker_session=sagemaker_session,
    )
    step_transform = TransformStep(
        name="AbaloneTransform",
        transformer=transformer,
        inputs=TransformInput(data=batch_data),
    )

    # define register model step
    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/evaluation.json".format(
                step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]
            ),
            content_type="application/json",
        )
    )
    step_register = RegisterModel(
        name="AbaloneRegisterModel",
        estimator=xgb_train,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
        transform_instances=["ml.m5.xlarge"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
    )

    # define condition step
    cond_lte = ConditionLessThanOrEqualTo(
        left=JsonGet(
            step_name=step_eval.name,
            property_file=evaluation_report,
            json_path="regression_metrics.mse.value",
        ),
        right=20.0,
    )

    step_cond = ConditionStep(
        name="AbaloneMSECond",
        conditions=[cond_lte],
        if_steps=[step_register, step_create_model, step_transform],
        else_steps=[],
    )

    # define pipeline
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
            batch_data,
        ],
        steps=[step_process, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )

    pipeline.create(role)
    execution = pipeline.start()
    execution_arn = execution.arn

    if wait:
        execution.wait()

    return execution_arn
コード例 #9
0
def test_steps_with_map_params_pipeline(
    sagemaker_session,
    role,
    script_dir,
    pipeline_name,
    region_name,
    athena_dataset_definition,
):
    instance_count = ParameterInteger(name="InstanceCount", default_value=2)
    framework_version = "0.20.0"
    instance_type = ParameterString(name="InstanceType", default_value="ml.m5.xlarge")
    output_prefix = ParameterString(name="OutputPrefix", default_value="output")
    input_data = f"s3://sagemaker-sample-data-{region_name}/processing/census/census-income.csv"

    sklearn_processor = SKLearnProcessor(
        framework_version=framework_version,
        instance_type=instance_type,
        instance_count=instance_count,
        base_job_name="test-sklearn",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_process = ProcessingStep(
        name="my-process",
        display_name="ProcessingStep",
        description="description for Processing step",
        processor=sklearn_processor,
        inputs=[
            ProcessingInput(source=input_data, destination="/opt/ml/processing/input"),
            ProcessingInput(dataset_definition=athena_dataset_definition),
        ],
        outputs=[
            ProcessingOutput(output_name="train_data", source="/opt/ml/processing/train"),
            ProcessingOutput(
                output_name="test_data",
                source="/opt/ml/processing/test",
                destination=Join(
                    on="/",
                    values=[
                        "s3:/",
                        sagemaker_session.default_bucket(),
                        "test-sklearn",
                        output_prefix,
                        ExecutionVariables.PIPELINE_EXECUTION_ID,
                    ],
                ),
            ),
        ],
        code=os.path.join(script_dir, "preprocessing.py"),
    )

    sklearn_train = SKLearn(
        framework_version=framework_version,
        entry_point=os.path.join(script_dir, "train.py"),
        instance_type=instance_type,
        sagemaker_session=sagemaker_session,
        role=role,
        hyperparameters={
            "batch-size": 500,
            "epochs": 5,
        },
    )
    step_train = TrainingStep(
        name="my-train",
        display_name="TrainingStep",
        description="description for Training step",
        estimator=sklearn_train,
        inputs=TrainingInput(
            s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                "train_data"
            ].S3Output.S3Uri
        ),
    )

    model = Model(
        image_uri=sklearn_train.image_uri,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sagemaker_session,
        role=role,
    )
    model_inputs = CreateModelInput(
        instance_type="ml.m5.large",
        accelerator_type="ml.eia1.medium",
    )
    step_model = CreateModelStep(
        name="my-model",
        display_name="ModelStep",
        description="description for Model step",
        model=model,
        inputs=model_inputs,
    )

    # Condition step for evaluating model quality and branching execution
    cond_lte = ConditionGreaterThanOrEqualTo(
        left=step_train.properties.HyperParameters["batch-size"],
        right=6.0,
    )

    step_cond = ConditionStep(
        name="CustomerChurnAccuracyCond",
        conditions=[cond_lte],
        if_steps=[],
        else_steps=[step_model],
    )

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[instance_type, instance_count, output_prefix],
        steps=[step_process, step_train, step_cond],
        sagemaker_session=sagemaker_session,
    )

    definition = json.loads(pipeline.definition())
    assert definition["Version"] == "2020-12-01"

    steps = definition["Steps"]
    assert len(steps) == 3
    training_args = {}
    condition_args = {}
    for step in steps:
        if step["Type"] == "Training":
            training_args = step["Arguments"]
        if step["Type"] == "Condition":
            condition_args = step["Arguments"]

    assert training_args["InputDataConfig"][0]["DataSource"]["S3DataSource"]["S3Uri"] == {
        "Get": "Steps.my-process.ProcessingOutputConfig.Outputs['train_data'].S3Output.S3Uri"
    }
    assert condition_args["Conditions"][0]["LeftValue"] == {
        "Get": "Steps.my-train.HyperParameters['batch-size']"
    }

    try:
        response = pipeline.create(role)
        create_arn = response["PipelineArn"]
        assert re.match(
            rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}",
            create_arn,
        )

    finally:
        try:
            pipeline.delete()
        except Exception:
            pass
コード例 #10
0
def test_tuning_single_algo(
    sagemaker_session,
    role,
    cpu_instance_type,
    pipeline_name,
    region_name,
):
    base_dir = os.path.join(DATA_DIR, "pytorch_mnist")
    entry_point = os.path.join(base_dir, "mnist.py")
    input_path = sagemaker_session.upload_data(
        path=os.path.join(base_dir, "training"),
        key_prefix="integ-test-data/pytorch_mnist/training",
    )
    inputs = TrainingInput(s3_data=input_path)

    instance_count = ParameterInteger(name="InstanceCount", default_value=1)
    instance_type = ParameterString(name="InstanceType",
                                    default_value="ml.m5.xlarge")

    pytorch_estimator = PyTorch(
        entry_point=entry_point,
        role=role,
        framework_version="1.5.0",
        py_version="py3",
        instance_count=instance_count,
        instance_type=instance_type,
        sagemaker_session=sagemaker_session,
        enable_sagemaker_metrics=True,
        max_retry_attempts=3,
    )

    min_batch_size = ParameterInteger(name="MinBatchSize", default_value=64)
    max_batch_size = ParameterInteger(name="MaxBatchSize", default_value=128)
    hyperparameter_ranges = {
        "batch-size": IntegerParameter(min_batch_size, max_batch_size),
    }

    tuner = HyperparameterTuner(
        estimator=pytorch_estimator,
        objective_metric_name="test:acc",
        objective_type="Maximize",
        hyperparameter_ranges=hyperparameter_ranges,
        metric_definitions=[{
            "Name": "test:acc",
            "Regex": "Overall test accuracy: (.*?);"
        }],
        max_jobs=2,
        max_parallel_jobs=2,
    )

    step_tune = TuningStep(
        name="my-tuning-step",
        tuner=tuner,
        inputs=inputs,
    )

    best_model = Model(
        image_uri=pytorch_estimator.training_image_uri(),
        model_data=step_tune.get_top_model_s3_uri(
            top_k=0,
            s3_bucket=sagemaker_session.default_bucket(),
        ),
        sagemaker_session=sagemaker_session,
        role=role,
    )
    model_inputs = CreateModelInput(
        instance_type="ml.m5.large",
        accelerator_type="ml.eia1.medium",
    )
    step_best_model = CreateModelStep(
        name="1st-model",
        model=best_model,
        inputs=model_inputs,
    )

    second_best_model = Model(
        image_uri=pytorch_estimator.training_image_uri(),
        model_data=step_tune.get_top_model_s3_uri(
            top_k=1,
            s3_bucket=sagemaker_session.default_bucket(),
        ),
        sagemaker_session=sagemaker_session,
        role=role,
        entry_point=entry_point,
        source_dir=base_dir,
    )

    step_second_best_model = CreateModelStep(
        name="2nd-best-model",
        model=second_best_model,
        inputs=model_inputs,
    )

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            instance_count, instance_type, min_batch_size, max_batch_size
        ],
        steps=[step_tune, step_best_model, step_second_best_model],
        sagemaker_session=sagemaker_session,
    )

    try:
        response = pipeline.create(role)
        create_arn = response["PipelineArn"]
        assert re.match(
            rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}",
            create_arn,
        )

        for _ in retries(
                max_retry_count=5,
                exception_message_prefix=
                "Waiting for a successful execution of pipeline",
                seconds_to_sleep=10,
        ):
            execution = pipeline.start(parameters={})
            assert re.match(
                rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
                execution.arn,
            )
            try:
                execution.wait(delay=30, max_attempts=60)
            except WaiterError:
                pass
            execution_steps = execution.list_steps()

            assert len(execution_steps) == 3
            for step in execution_steps:
                assert step["StepStatus"] == "Succeeded"
            break
    finally:
        try:
            pipeline.delete()
        except Exception:
            pass