コード例 #1
0
def train_and_test(train_op, num_iters, sess, model, x_train, y_train, x_test, y_test, batch_size=1,
                   output_debug=False):
    for i in range(num_iters):
        # Train...
        x, y = benchmark_model.batch(x_train, y_train, batch_size=batch_size)
        _, = sess.run([train_op], feed_dict={
            model.inputs: x,
            model.labels: y,
        })
        train_loss, train_acc = sess.run([model.cross_entropy, model.accuracy], feed_dict={
            model.inputs: x,
            model.labels: y,
        })
        if output_debug:
            outputs = sess.run(model.outputs, feed_dict={
                model.inputs: x,
                model.labels: y,
            })
            print(outputs)
        stats = []
        # Compute test accuracy.
        for _ in range(5):
            x, y = benchmark_model.batch(x_test, y_test, batch_size=batch_size)
            stats.append(sess.run([model.cross_entropy, model.accuracy], feed_dict={
                model.inputs: x,
                model.labels: y,
            }))
        test_loss, test_acc = np.mean(stats, axis=0)
        
        print('\r({}/{}) [Train]loss {:.3f}, accuracy {:.3f} [Test]loss {:.3f}, accuracy {:.3f}'.format(
            i + 1, num_iters,
            train_loss, train_acc, test_loss, test_acc), end='', flush=True)
    print()
コード例 #2
0
 def test_mnist(self):
     config = agents.tools.AttrDict(default_config())
     model = benchmark_model.build_tf_one_hot_model(config.batch_size)
     from keras.utils.np_utils import to_categorical
     from keras.datasets.mnist import load_data
     (x_train, y_train), (x_test, y_test) = load_data('/tmp/mnist')
     x_train = x_train.reshape((-1, 784)).astype(np.float64) / 255.
     y_train = to_categorical(y_train, 10).astype(np.float64)
     
     assert x_train.shape == (60000, 784)
     assert y_train.shape == (60000, 10)
     
     optimizer = optimizers.NMFOptimizer()
     train_op = optimizer.minimize(model.frob_norm)
     losses = []
     
     init = tf.global_variables_initializer()
     with self.test_session() as sess:
         sess.run(init)
         pprint(optimizer._layers)
         for i in range(2):
             x, y = benchmark_model.batch(x_train, y_train, config.batch_size)
             _, new_loss, acc = sess.run([train_op, model.cross_entropy, model.accuracy], feed_dict={
                 model.inputs: x,
                 model.labels: y,
             })
             losses.append(new_loss)
             print('\nloss {}, accuracy {}'.format(new_loss, acc), end='', flush=True)
コード例 #3
0
def main(_):
    # Set configuration
    config = AttrDict(default_config())
    # Build one hot mnist model.
    model = benchmark_model.build_tf_one_hot_model(batch_size=config.batch_size,
                                                   use_bias=config.use_bias,
                                                   activation=config.activation)
    # Load one hot mnist data.
    (x_train, y_train), (x_test, y_test) = benchmark_model.load_one_hot_data(dataset=config.dataset)
    
    # Testing whether the dataset have correct shape.
    assert x_train.shape == (60000, 784)
    assert y_train.shape == (60000, 10)
    
    # Minimize model's loss with NMF optimizer.
    # optimizer = NMFOptimizer(config)
    optimizer = NMFOptimizer(config=config)
    train_op = optimizer.minimize(model.frob_norm)
    
    # Minimize model's loss with Adam optimizer.
    bp_optimizer = tf.train.AdamOptimizer(config.learning_rate)
    bp_train_op = bp_optimizer.minimize(model.cross_entropy)
    
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        
        for i in range(1000):
            x, y = benchmark_model.batch(x_train, y_train, batch_size=config.batch_size)
            loss, _ = sess.run([optimizer.autoencoder_loss, optimizer.autoencoder_train_op],
                               feed_dict={model.inputs: x})
            print('\rloss {}'.format(loss), end='', flush=True)
        print()
        
        _train_and_test = functools.partial(train_and_test,
                                            sess=sess, model=model,
                                            x_train=x_train, y_train=y_train,
                                            x_test=x_test, y_test=y_test,
                                            batch_size=config.batch_size)

        print('NMF-optimizer')
        # Train with NMF optimizer.
        _train_and_test(train_op, num_iters=config.num_mf_iters)

        print('Adam-optimizer')
        # Train with Adam optimizer.
        _train_and_test(bp_train_op, num_iters=config.num_bp_iters)
コード例 #4
0
ファイル: hitati_plot.py プロジェクト: ashigirl96/sakurai-nmf
def train_and_test(train_op, num_iters, sess, model, x_train, y_train, x_test, y_test, batch_size=1,
                   output_debug=False, add_loss_before_train=False) -> Tuple[np.ndarray, np.ndarray]:
    # 1 epoch = num_timesteps * batch_size
    total_train_losses = []
    total_test_losses = []
    num_timesteps = x_train.shape[0] // batch_size

    # Before training
    if add_loss_before_train:
        train_losses = []
        for _ in range(5):
            x, y = benchmark_model.batch(x_train, y_train, batch_size=batch_size)
            train_losses.append(sess.run(model.mse_losses, feed_dict={
                model.inputs: x,
                model.labels: y,
            }))
        total_train_losses.append(np.mean(train_losses, axis=0))
        test_losses = []
        for _ in range(5):
            x, y = benchmark_model.batch(x_test, y_test, batch_size=batch_size)
            test_losses.append(sess.run(model.mse_losses, feed_dict={
                model.inputs: x,
                model.labels: y,
            }))
        total_test_losses.append(np.mean(test_losses))

    durations = [.0]
    for i in range(num_iters):
        # Train...
        start_time = time.time()
        train_losses = []
        test_losses = []

        # Inference and compute loss during training.
        for t in range(num_timesteps):
            x, y = benchmark_model.batch(x_train, y_train, batch_size=batch_size)
            _, train_loss = sess.run([train_op, model.mse_losses], feed_dict={
                model.inputs: x,
                model.labels: y,
            })
            assert train_loss.shape == (4,), "train_loss shape {}".format(train_loss.shape)
            train_losses.append(train_loss)
        duration = time.time() - start_time
        durations.append(duration)

        # Compute test accuracy.
        for _ in range(5):
            x, y = benchmark_model.batch(x_test, y_test, batch_size=batch_size)
            test_losses.append(sess.run(model.mse, feed_dict={
                model.inputs: x,
                model.labels: y,
            }))
        train_loss = np.mean(train_losses, axis=0)
        assert train_loss.shape[0] == 4
        test_loss = np.mean(test_losses)

        print('\r({}/{}) [Train]loss {:.3f}, time, {:.3f} [Test]loss {:.3f}'.format(
            i + 1, num_iters,
            np.mean(train_loss), duration, test_loss), end='', flush=True)
        total_train_losses.append(train_loss)
        total_test_losses.append(test_loss)
    print()
    print('Mean training time {}'.format(np.mean(durations)))

    total_train_losses = np.asarray(total_train_losses).T
    total_test_losses = np.asarray(total_test_losses).T

    return (total_train_losses, total_test_losses)